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Assumptions about attendees

▪ Understand Microprocessors

▪ 8-, 16- or 32-bit CPUs

▪ Instruction Sets

▪ Memory

▪ I/Os (Peripherals)

▪ Interrupts

▪ Computer Science

▪ Knowledge of C and assembly language

▪ Compilers, Assemblers, Linkers

▪ Understand Data Structure

▪ Familiar with Software Debugging
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Agenda



Agenda

▪ About Silicon Labs / Micrium

▪ Bare Metal Systems

▪ What is an RTOS?

▪ RTOS basics

▪ RTOS Services

▪ Seeing Inside Live Embedded Systems

▪ Debugging RTOS-Based Systems

▪ RTOS Usage Examples

▪ Recommendations

▪ References
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About Silicon Labs / Micriµm



Silicon Labs - A Global Company
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~1500 
EMPLOYEES WORLDWIDEHEADQUARTERED IN

AUSTIN

INTERNATIONAL HQ 

SINGAPORE

Sales OfficesR&D Centers



The Leader in IoT Wireless Connectivity

Wi-FiBluetooth Thread ZigbeeProprietary Z-Wave



Serving a Broad Range of Customers and Application Areas
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We’re in more than
360,000 EV/HEV cars

Boosted energy capacity by 36 GW in 5 years in 
7.3 million solar inverters

We help coordinate
90% of Internet traffic

30 million hours saved 
yearly with smart metering applications 

We’ve shipped
more than 150 million

mesh networking devices

On board 100% of cherry red electric  
Tesla roadsters currently

orbiting the sun



Introducing Micriµm

▪ Provider of High Quality Embedded Software

▪ RTOS, protocol stacks and other components

▪ Remarkably clean code

▪ Outstanding documentation

▪ Top-notch technical support

▪ Debug tools

▪ Founded in 1999, Acquired by Silicon Labs in 2016.

▪ Based in the US (South Florida)

▪ Provider of high-quality embedded software

▪ FREE for Educational Use

▪ Licensed for commercial use



µC/OS-II – On Mars

https://www.micrium.com/about/customer-stories/curiosity/



Micriµm – Embedded Software

Kernel (RTOS)

File System

TCP/IP
CAN

USB (Host and Device)

GUI
Modbus

µC/Probe

Tools

Software

Components

Books



Micriµm - A Tradition of Quality

1992 –
Original 
µC/OS 
released

1993 –
µC/OS first 
RTOS used 
with ARM 
processor

2000 –
µC/OS-II first 
used in DO-
178B 
aerospace 
project

2015 –

Top 
commercial 
RTOS 
ranking for 
Micrium in 
annual UBM 
survey

2009 –
MicriumPress
publishes 
initial book in 
µC/OS-III 
series



Micriµm – Semiconductor Partners



Bare Metal Systems (a.k.a. Super Loops or, Single Threaded)



Bare Metal – Super Loop
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Infinite Loop

Tasks (Super Loop)

Lower Priority ISR

Higher Priority ISR

void  main (void)

{

Init();

for (;;) {

Task_1();

Task_2();

Task_3();

Task_4();

Task_5();

}

}

void  LP_ISR (void)

{

Clear Interrupt;

Perform Work;

}

void  HP_ISR (void)

{

Clear Interrupt;

Perform Work;

}

Low Priority High Priority



Bare Metal - Benefits

▪ Used in fairly simple applications

▪ You only need a single stack

▪ Set the SP once at startup

▪ Requires less RAM

▪ High performance

▪ Highly responsive to interrupts

▪ But, ISRs often do too much of the work that should be handled by a task

▪ Interrupt disable time dictated by your application

▪ You can use non-reentrant functions
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Bare Metal - Drawbacks

▪ Difficult to ensure that each operation will meet its deadlines

▪ All code in the main() loop has the same priority

▪ If one function call takes longer than expected, the responsiveness of the whole system can suffer

▪ Excessive polling waste CPU time

▪ Hardware failure can lock up the application
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void  main (void) 

{

Initialization;

while (1) {

ADC_Read();

SPI_Read();

USB_Packet();

LCD_Update();

Audio_Decode();

File_Write();

}

}

void  ADC_Read (void)

{

Initialize ADC;

while (ADC Converter NOT ready) {

;    

}

Process converted value;

}

?
Unexpected delays 

and possible lockup



Bare Metal - Drawbacks

▪ High priority code must be placed in ISRs

▪ Long ISRs may affect the responsiveness of the system

▪ Coordination between ISR and main() is difficult
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void  main (void) 

{

Initialization;

while (1) {

ADC_Read();

SPI_Read();

USB_Process_Packet();

LCD_Update();

Audio_Decode();

File_Write();

}

}

void  USB_ISR (void) 

{

Clear Interrupt;

Read Packet;

Indicate packet received;

}

Could take a long time before 

the packet gets processed



Bare Metal - Drawbacks

▪ The responsiveness of the application can change as you add code

▪ Code is often duplicated to compensate for lack of responsiveness

▪ Counters are used to limit the execution rate 

▪ Large applications are difficult to maintain

▪ Difficult to coordinate the effort of multiple developers and ensure timing 
requirements are met

▪ Changes to one portion of the code can impact another

▪ Difficult to use protocol stacks

▪ Many of the protocol stacks assume an RTOS

▪ Difficult to do battery management
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while (1) {

ADC_Read();

LCD_Update();

SPI_Read();

USB_Packet();

LCD_Update();

Audio_Decode();

File_Write();

LCD_Update();

}

while (1) {

ADC_Read();

if ((i % 64) == 0) {

SPI_Read();

}

USB_Packet();

LCD_Update();

if ((i % 32) == 0) {

Audio_Decode();

}

File_Write();

i++;    

}

Code duplication

Counters to limit execution rate



What Is An RTOS? (a.k.a. Real-Time Kernel)



▪ Software that manages the time and resources of a CPU

▪ Application is split into multiple tasks

▪ The RTOS’s job is to run the most important task that is ready-to-run

▪ On a single CPU, only one task executes at any given time

What Is An RTOS? - Multitasking
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RTOS
(Code)

Task
(Code+Data+Stack)

Task
(Code+Data+Stack)

Task
(Code+Data+Stack)

Task
(Code+Data+Stack)

High
Priority

Low
Priority

Events
Signals/Messages 
from Tasks or ISRs

CPU+FPU+MPU
(8, 16, 32 or 64-bit)

Select
Highest Priority Task

Tasks that are ready-to-run



What Is An RTOS? – Code That You Add To Your Application

▪ An RTOS is either provided in source form or as a library that you link to your code

▪ Most RTOSs are written in C

▪ Assembly language code is needed to adapt the RTOS to different CPU architectures (called a Port)

▪ This is provided by the RTOS supplier
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RTOS
Code+Data

(CPU Independent)

RTOS
Code

(CPU Dependent)

Application
Code + Data

Written in C

Written in Assembly Language

Optional
Middleware

Code+Data
(TCP/IP)

(GUI)
(File System)
(USB stacks)
(Bluetooth)

(etc.)

Embedded System



What Is An RTOS? – Provide Services To Your Application
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CPU + FPU (opt) + MPU (opt)

Tasks

OSTaskCreate(..)

OSTaskDel(..)

OSTaskSuspend(..)

OSTaskResume(..)

OSTaskChangePrio()

:

:

Semaphores

OSSemCreate(..)

OSSemDel(..)

OSSemPend(..)

OSSemPost(..)

:

:

OSFlagCreate(..)

OSFlagDel(..)

OSFlagPend(..)

OSFlagPost(..)

:

:

Event Flags Mutexes

OSMutexCreate(..)

OSMutexDel(..)

OSMutexPend(..)

OSMutexPost(..)

:

:

OSQCreate(..)

OSQDel(..)

OSQPend(..)

OSQPost(..)

:

:

Queues

OSTmrCreate(..)

OSTmrDel(..)

OSTmrStart(..)

OSTmrStop(..)

:

:

Timers Memory Blocks

OSMemCreate(..)

OSMemDel(..)

OSMemGet(..)

OSMemPut(..)

:

:

RTOS

Application
(Code + Data)

Optional Middleware
(Code + Data)

(TCP/IP, GUI, File System, USB Stacks, Bluetooth, Etc.)

Time

OSTimeDly(..)

OSTimeDlyHMSM(..)

OSTimeDlyResume(..)

OSTimeGet(..)

OSTimeSet(..)

:

:



What Is An RTOS? - Benefits

▪ Creates a framework for developing applications

▪ Facilitate teams of multiple developers

▪ Allows you to split and prioritize the application code

▪ The RTOS always runs the highest priority task that is ready

▪ Adding low-priority tasks don’t affect the responsiveness of high priority tasks 

▪ Tasks wait for events

▪ A task doesn’t consume any CPU time while waiting – avoids polling

▪ It’s possible to meet all the deadlines of an application

▪ Rate Monotonic Analysis (RMA) could be used to determine schedulability

▪ Most RTOSs have undergone thorough testing

▪ Some are third-party certifiable, and even certified (DO-178B, IEC-61508, IEC-62304, etc.)

▪ It’s unlikely that you will find bugs in RTOSs

▪ RTOSs typically support many different CPU architectures

▪ Very easy to add power management
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What Is An RTOS? - Benefits

▪ Provides services to your application

▪ ISR management

▪ Task management

▪ Time management

▪ Resource management

▪ ISR and inter-task communication

▪ Memory management

▪ Etc.

▪ RTOSs make it easy to add middleware components

▪ TCP/IP stack

▪ USB stacks

▪ File System

▪ Graphical User Interface (GUI)

▪ Etc.

26



What Is An RTOS? - Drawbacks

▪ The RTOS itself is code and thus requires more Flash

▪ Typically between 6-20 Kbytes

▪ An RTOS requires extra RAM

▪ Each task requires its own stack

▪ The size of each task depends on the application

▪ Each task needs to be assigned a Task Control Block (TCB)

▪ About 32 to 128 bytes of RAM

▪ About 256 bytes for the RTOS variables

▪ You have to assign task priorities

▪ Deciding on what priority to give tasks is not always trivial

▪ The services provided by the RTOS consume CPU time

▪ Overhead is typically 2-5% of the CPU cycles, could be more

▪ There is a learning curve associated with the RTOS you select

27

CPU



What Is An RTOS? – Do You Need One?

▪ Do you have some real-time requirements?

▪ Do you have independent tasks?

▪ User interface, control loops, communications, etc.

▪ Do you have tasks that could starve other tasks?

▪ e.g. updating a graphics display, receiving an Ethernet frame, encryption, etc.

▪ Do you have multiple programmers working on different portions of your project?

▪ Is portability and reuse important?

▪ Does your product need additional middleware components?

▪ TCP/IP stack, USB stack, GUI, File System, Bluetooth, etc.

▪ Do you have enough RAM to support multiple tasks?

▪ Flash memory is rarely a concern because most embedded systems have more Flash than RAM

▪ Are you using a 32-bit CPU?

▪ You should consider using an RTOS
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RTOS Basics



▪ Each task:

▪ Is assigned a priority based on its importance

▪ Requires its own Stack

▪ Manages its own variables, arrays and structures

▪ Is typically an infinite loop

▪ Possibly manages I/O devices

▪ Contains YOUR application code

RTOS Basics – Tasks
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CPU_STK  MyTaskStk[MY_TASK_STK_SIZE];  // Task Stack

void MyTask (void *p_arg)              // Task Code

{

Local Variables;

Task initialization;

while (1) {                          // Infinite Loop (Typ.)

Wait for Event;

Perform task operation;            // Do something useful

}

}

Task
(Priority)

Stack
(RAM) Variables

Arrays
Structures

(RAM)

I/O
Device(s)

(Optional)



▪ You must tell the RTOS about the existence of a task:

▪ The RTOS provides a special API: OSTaskCreate() (or equivalent)

▪ The RTOS assigns the task:

▪ Its own set of CPU registers

▪ A Task Control Block (TCB)

RTOS Basics – Creating A Task
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Task
(Priority)

Stack
(RAM) Variables

Arrays
Structures

(RAM)

CPU
Registers

(CPU+FPU+MPU)

I/O
Device(s)

(Optional)

TCB
(RAM)

void OSTaskCreate (MyTask,          // Address of code

&MyTaskStk[0],    // Base of stack

MY_TASK_STK_SIZE,// Size of stack

MY_TASK_PRIO,    // Task priority

:

:);



▪ Each task requires its own stack

▪ Local variables

▪ Return addresses

▪ The size depends on what the task does

▪ Each task can have a different stack size

▪ When a task is created:

▪ The Top-Of-Stack is populated by with the initial values of CPU registers

▪ R0-Rn, Status Register, PC

▪ FPU registers (If the CPU has an FPU)

▪ The Bottom-of-Stack is populated with canary values

▪ Used to determine stack usage and detect stack overflows

▪ An RTOS task can scan each of the task stacks to compute actual CPU usage

▪ The Cortex-M33 processor has hardware Stack Limit detection

▪ A fault is generated if the SP is changed to be lower than the SP_Limit

▪ The RTOS can then terminate the offending task

RTOS Basics – The Task’s Stack
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PC
Status

R0
R1

RnSP

Top-of-Stack
(High Memory Address)

Bottom-of-Stack
(Low Memory Address)

Stack
Overflow

Area

SP_Limit
(Cortex-M33)

Stack Growth



RTOS Basics – Event Driven
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Task

Task

Task

Task

Task

High Priority

Low Priority

void EachTask (void)

{

Task initialization;

while (1) {

Setup to wait for event;

Wait for MY event to occur;

Perform task operation;

}

}

Event
Occurs

Wait For
Event

▪ Only the highest-priority Ready task can execute

▪ Other tasks will run when the current task decides to waits for its event

▪ Ready tasks are placed in the RTOS’s Ready List

▪ Tasks waiting for their event are placed in the Event Wait List …

Task

Task Task



RTOS Basics – Wait Lists
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Task waiting for 

DMA to complete

DMA Completion

Semaphore

Printer Access

Mutex

Task waiting to 

access printer

Task waiting to 

access printer

Task waiting to 

access printer

High Priority Low Priority

Tick List

(Delta List) Task waiting for 

time to expire

Task waiting for 

time to expire

Task waiting for 

time to expire

Shortest Delay or Timeout Longest Delay or Timeout

Notes: 
1) List of Task Control Blocks (TCBs)
2) A task can be in 2 lists at the same time 

(the second one would be the Tick List)



RTOSs are typically Preemptive
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High Priority Task

Low Priority Task Low Priority Task

Event
Occurs

Signal
Task

RTOS
Resumes
Task

RTOS
Resumes
Task

Wait For
Event

ISR

void Low_Prio_Task (void)

{

Task initialization;

while (1) {

Setup to wait for event;

Wait for event to occur;

Perform task operation;

}

}

void High_Prio_Task (void)

{

Task initialization;

while (1) {

Setup to wait for event;

Wait for event to occur;

Perform task operation;

}

}

void ISR (void)

{

Entering ISR;

Perform Work;

Signal or Send Message to Task;

Perform Work;  // Optional

Leaving ISR;

}

Time

RTOS Overhead



RTOS Basics – RTOS and User Code run in Privileged Mode 
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Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Memory

ISR

ISR

ISR

I/O

I/O

I/O

I/O

▪ Without an MPU, RTOS tasks run in Privileged mode

▪ Access to all resources

▪ Done for performance reasons

▪ Drawbacks:

▪ Reliability of the system is in the hands of the application code

▪ ISRs and tasks have full access to the memory address space

▪ Tasks can disable interrupts

▪ Task stacks can overflow without detection

▪ Code can execute out of RAM

▪ Susceptible to code injection attacks

▪ A misbehaved task can take the whole system down

▪ Expensive to get safety certification for the whole product 



RTOS Basics – Context Switch (without an MPU)
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Example using Cortex-M4

CPU
FPU

Task Stack
(RAM)

Task Stack
(RAM)

CPU Registers
+

FPU Registers

Context 
Switch

SaveRestore

12Task
Control
Block
(TCB)

Task
Control
Block
(TCB)



RTOSs are Event Driven



Type of Events
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▪ Data available from another task

▪ From Kernel Aware Interrupts

▪ Timer expires

▪ DMA transfer completes 

▪ Ethernet packet arrives

▪ etc.

▪ An ISR or a task signals another task

▪ Through a semaphore

▪ Through an event flag

▪ A mutex is released

ISR

Task



Kernel Aware Interrupt Events

▪ Oftentimes, interrupts are events that tasks are wait for

▪ Interrupts are more important than tasks

▪ Assuming, of course, that interrupts are enabled

▪ Kernel Aware (KA) ISRs:

▪ Need to notify the RTOS of ISR entry and exit

▪ Allows for nesting ISRs and avoid multiple scheduling

▪ ISRs can be written directly in C with Cortex-M CPUs
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void MyISR (void)

{

Entering ISR;

:

Signal or send a message to a MyTask;

:

Leaving ISR;

}

Task

Task

Event
Occurs

ISR Level 3

RTOS resumes which task?

Signal

OR?

Task

ISR Level 2

ISR Level 1

ExitEnter

Event
Occurs

Event
Occurs

No schedulingNo scheduling

Scheduling



Tasks can also generate events for other tasks

▪ If a high-priority task generates an event that a low-priority task is waiting for, the high-priority task continues execution

▪ If a low-priority task generates an event that a high-priority task is waiting for, the RTOS switches to the high-priority task
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Task

Task

Event
Occurs

OR?Task

Task

Task

Event
Occurs

Task

Context
Switch

High-Priority Task

Low-Priority Task

High-Priority Task

Low-Priority Task

When HPT waits for 
its event to reoccur

When HPT waits for 
its event to reoccur



non-Kernel Aware Interrupts

▪ Non-Kernel Aware (nKA) ISRs

▪ ISRs that have priorities higher than Kernel Aware ones

▪ Your code MUST NOT make any RTOS API calls within these ISRs

▪ Processors like the Cortex-M allow you to set the nKA boundary

▪ In order of priority:

▪ Reset

▪ NMI (Non-Maskable Interrupts)

▪ nKA ISRs

▪ KA ISRs

▪ Highest priority task

▪ Lowest priority task (typ. The RTOS’s Idle Task)
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nKA
Boundary

ISRs

Tasks



The Tick Interrupts – Just another source of Events!

▪ Most RTOS have a time-based interrupt

▪ Called the System Tick or Clock Tick

▪ Requires a hardware timer

▪ The Cortex-M has a dedicated RTOS timer called the SysTick

▪ The System Tick is used to provide coarse:

▪ Delay (or sleep)

▪ Timeouts on Wait for Event RTOS APIs 

▪ A System Tick is not mandatory!

▪ If you don’t need time delays or timeouts you can remove it

▪ Typically interrupts at regular intervals

▪ Not power-efficient

▪ Dynamic tick (a.k.a. tick suppression) is more efficient

▪ Requires reconfiguring the tick timer at each interrupt
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Typical RTOS Tick

Dynamic RTOS Tick

5 ms 17 ms 5 ms
3 ms

Typ. 1 ms



RTOS Services



RTOS Services – Time Delays (i.e. Sleep)

▪ A task can put itself to sleep by calling RTOS APIs:

▪ OSTimeDly() // Delay for N ticks

▪ OSTimeDlyHMSM() // Delay for Hours, Minutes, Seconds, Milliseconds

▪ Can be used to wake up a task at regular intervals

▪ Control loops

▪ Updating a display

▪ Scanning a keyboard

▪ Letting other tasks a chance to run

▪ Etc.
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Task

void Task (void)

{

Task initialization;

while (1) {

Sleep for ‘N’ ticks;

Do work;

}

}

N Ticks



RTOS Services – Soft Timers

▪ Some RTOSs can provide soft timers which can be used to 
perform actions either once or at regular intervals

▪ A timer is an RTOS object containing:

▪ An optional start delay

▪ The amount of time to expire

▪ A pointer to a callback to perform an action upon expiring

▪ The option to auto repeat

▪ You can have an unlimited number of timers

▪ Each timer must be created before it can be used

▪ All of them execute in the context of a single task (i.e. the timer task)

▪ All timers are typically managed by an RTOS internal task

▪ Example usage:

▪ Task opens a valve, starts a timer to close the valve after X seconds

▪ Task starts a timer to blink a light
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Auto Repeat Timer

One-Shot Timer



RTOS Services – Sharing A Resource – Using a Semaphore

▪ What is a resource?

▪ Shared memory, variables, arrays, structures

▪ I/O devices

▪ RTOSs used to use Semaphores for resource sharing

▪ A Semaphore is an RTOS object

▪ An semaphore must be created before it can be used

▪ OSSemCreate()

▪ Semaphores are subject to priority inversions …
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Task

Task

Task

Shared
Resource
(Memory or I/O)

Semaphore

Acquire

Relinquish

1

2

Access

3

void EachTask (void)

{

Task initialization;

while (1) {

:

:

Acquire Semaphore;

Access the resource;

Relinquish the Semaphore;

:

}

}

Timeout

OSSemPost()

OSSemPend()



Priority Inversions Problem With Semaphores
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AppLPT

AppHPT

Semaphore

Shared
Resource

A

B

C

OSSemPend(&Semaphore, Timeout);

//Access the Shared Resource

OSSemPost(&Semaphore);

OSSemPend(&Semaphore, Timeout);

//Access the Shared Resource

OSSemPost(&Semaphore);

UNBOUNDED Priority Inversion

HPT ISR

MPT ISR

HPT Task

MPT Task

LPT Task

Owns the Resource (i.e. Semaphore)



RTOS Services – Sharing A Resource 

▪ RTOSs typically provide resource sharing APIs

▪ Called Mutual Exclusion Semaphores (Mutex)

▪ A Mutex is an RTOS object containing:

▪ The key (binary value)

▪ The priority of the mutex owner

▪ A list of task waiting to acquire the mutex

▪ An mutex must be created before it can be used

▪ OSMutexCreate()

▪ Mutex have built-in priority inheritance

▪ Eliminates unbounded priority inversions

▪ There could be multiple mutexes in a system

▪ Each protecting access to a different resource
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Task

Task

Task

Shared
Resource
(Memory or I/O)

Mutex

Acquire

Relinquish

1

2

Access

3

void EachTask (void)

{

Task initialization;

while (1) {

:

:

Acquire Mutex;

Access the resource;

Relinquish the Mutex;

:

}

}

Timeout

OSMutexPost()

OSMutexPend()



Unbounded Priority Inversion Avoided with Mutex
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AppLPT

AppHPT

Mutex

Shared
Resource

A

B

C

OSMutexPend(&Mutex, Timeout);

//Access the Shared Resource

OSMutexPost(&Mutex);

OSMutexPend(&Mutex, Timeout);

//Access the Shared Resource

OSMutexPost(&Mutex);

Priority of LPT raised to HPT
HPT ISR

MPT ISR

HPT Task

MPT Task

LPT Task

Owns the Resource (i.e. Mutex)

Priority of LPT lowered back to original priority



RTOS Services – Signaling A Task Using Semaphores 

▪ Semaphores can be used to signal a task

▪ Called from ISR or Task

▪ Does not contain data

▪ A Semaphore is an RTOS object containing:

▪ A counter to accumulate unprocessed signals

▪ A list of tasks waiting for the event to occur

▪ Typically only 1 task waits on a given semaphore

▪ An semaphore must be created before it can be used

▪ OSSemCreate()
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ISR Task

Semaphore

Signal Wait

void TaskEventISR (void)

{

Clear interrupt;

Signal Semaphore;

}

Timeout

void Task (void)

{

Task Initialization;

while (1) {

Wait on Semaphore;

Perform work;

}

}

OSSemPost() OSSemPend()



RTOS Services – Signaling Task(s) Using Event Flags 

▪ Event Flags are a grouping of bits used to signal the 
occurrence of more than one events

▪ Signals from ISRs or Tasks

▪ Only tasks can wait for events

▪ Does not contain data (just happened or not)

▪ An Event Flag group must be created before it can be used

▪ OSFlagCreate()

▪ A Event Flag group is an RTOS object containing:

▪ The current state of each of the N-bits in a group (i.e. 1 or 0)

▪ Each corresponds to an event

▪ Typically 8, 16 or 32 bits per group

▪ A list of tasks waiting on the Event Flag group

▪ Each task waits for desired bit  (OR-condition or AND-condition)
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Task

Event
Flag

Group

Set/Clear
Flag(s)

Timeout

void Task (void)

{

Task Initialization;

while (1) {

Wait on Event Flag Group;

Perform work;

}

}

Task

Timeout

Wait for ‘ANY’ of 
the desired flags

Wait for ‘ALL’ of 
the desired flags

ISR

Set/Clear
Flag(s)

void TaskEventISR (void)

{

Clear interrupt;

Signal Event Flag Group;

}

Task

‘N’
Flag(s)

‘M’
Flag(s)

OSFlagPend()

OSFlagPend()

OSFlagPost()

OSFlagPost()



RTOS Services – Sending Messages To Task(s) 

▪ Messages can be sent from an ISR or a task to other task(s)

▪ Messages are typically pointers to data

▪ The data sent depends on the application

▪ The data must remain in scope until no longer referenced

▪ Message queues are used for sending messages

▪ A message queue is an RTOS object containing:

▪ A queue that can hold ‘N’ messages

▪ Queues can either be FIFO or LIFO

▪ A list of tasks waiting for messages to arrive at the queue

▪ Typically only 1 task waits on a specific message queue

▪ An message queue must be created before it can be used

▪ OSQCreate()
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Task

Task

Task

Send

void ReceiverTask (void)

{

Task initialization;

while (1) {

Wait for Message;

Process data;

}

}

Receive

Producers

void SenderTask (void)

{

Task initialization;

while (1) {

Produce data;

Send to task;

}

}

ISR

Timeout

OSQPost() OSQPend()

Data

Send

Send
Consumer(s)



Quick Break - ~15 Minutes



Process Separation



▪ Tasks are grouped by processes

▪ Can have multiple tasks per process

▪ Memory of one process is not accessible to other processes

▪ Unless they share a common memory space

▪ ISRs typically have full access to memory

▪ Would be very complex otherwise

▪ I’ll assume a Cortex-M MPU from now on

▪ User tasks can’t disable/enable interrupts

▪ Also cannot alter the interrupt controller settings

▪ This is a P/NP feature, not an MPU one

▪ Requires an SVC handler

▪ Task stack overflows can be detected with the MPU

▪ Not needed for ARMv8-M because of stack limit registers

▪ MPU configuration consist of setting up a process table for each task

Process Separation – Process Model (Requires an MPU or MMU)
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Process Separation – Context Switch
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Process Separation – Expanded Process View
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I/Os

Task 4 - Stack

Task 2 - Stack

Task 1 - Stack

Heap

Task 3 - Stack

Process
Variables

Memory
(RAM)

Peripherals
(I/O)

Code
Space

4

2

5
3

Shared RAM

1

6

▪ A task can have up to 8 or 16 regions 

▪ (1) Full access to code space

▪ Typically don’t limit access to code

▪ (2) At least one region for process peripheral

▪ May need more than one

▪ (3) One region to access the RAM for the process

▪ On ARMv7-M, size must be a power of 2

▪ On ARMv8-M, size doesn’t have to be a power of 2

▪ (4) One region stack overflow detection

▪ … see next slide

▪ Not needed for ARMv8-M

▪ (5) This is unused area

▪ On ARMv8-M, this can be as small as 32 bytes

▪ (6) Memory to be shared with other processes

▪ If needed



Process Separation – Stack overflow detection – Method #1
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Red Zone

Base
Address

Initial
Top-of-Stack

Used Stack

Red-Zone 
Size

Stack Size

Free Stack

Current
SP

Task Stack

Stack Growth

MPU Region



Process Separation – Stack overflow detection – Method #2
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Base Address
(Aligned on Power-Of-Two Boundary)

Initial
Top-of-Stack

Used Stack

Stack Size
(Size must be a Power-of-Two)

Free Stack

Current
SP

Task Stack

Stack Growth

MPU Region



Process Separation – Stack overflow detection – Method #3
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Base Address
(Aligned on Power-Of-Two Boundary)

Initial
Top-of-Stack

Used Stack

Stack Size
(Size must be a Power-of-Two)

Free Stack

Current
SP

Task Stack

Stack Growth

MPU Region

(Size must be a Power-of-Two)
(Smaller or Equal to Stack Size)

(Region cannot be part of Process)



Process Separation – User tasks run in Non-Privileged mode
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SVC Handler

Non-Privileged
Code

SVC Jump Table
(Allowed RTOS Services)

N RTOS Service
0 OSSemPost()
1 OSSemPend()
2 OSQPost()
3 OSQPend()
4 OSMutexPost()
5 OSMutexPend()
6 OSTimeDly()
: :
: :

N-1 OSVersion()

Privileged
Code

CPU + NVIC + MPU

Cannot disable interrupts
Cannot change the NVIC settings
Cannot change the MPU settings

Can disable interrupts
Can change the NVIC settings
Can change the MPU settings

Non-Privileged

Privileged

RTOS
(Privileged)

SVC #N

1

2

3

4

USER Tasks SYSTEM Tasks



▪ What happens when a task accesses data outside a valid region?

▪ The MPU issues an exception called the MemManage Fault

▪ What can we do when a fault is detected?

▪ Depends greatly on the application

▪ The RTOS should save information about the offending task

▪ To help developers correct the problem

▪ The RTOS should provide a callback function for each task

▪ To allow the application to perform a Controlled Shutdown sequence

▪ Actuators to be placed in a safe state

▪ Terminate the offending task?

▪ Do we also need to terminate other tasks associated with the process?

▪ What happens to the resources owned by the task(s)?

Process Separation – Handling Faults
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Seeing Inside Live Embedded Systems



Debugging Live Systems

▪ You can’t always ‘single step’ through code!

▪ Engine control

▪ Printing presses

▪ Food processing

▪ Flight management

▪ Chemical reactions

▪ Agricultural equipment

▪ Etc.

▪ Stopping these systems can have disastrous 
and/or costly consequences

▪ Must be tested and debugged live
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How Do You ‘See’ Inside These Systems?

▪ Displaying values using:

▪ LED annunciators

▪ 7-Segment numeric displays

▪ Bar graphs

▪ Alphanumeric displays

▪ Graphical user interfaces (GUIs)

▪ printf() statements to a terminal

▪ Debugger’s live watch … limited to numerical values

▪ Etc.

▪ Drawbacks:

▪ Display capabilities might be limited

▪ All require target resident code

▪ Heisenberg effect is often significant

▪ Limited to what you can see/change

▪ If you forget something … 

▪ Rebuild code

▪ Download

▪ Try to get back to the same test conditions
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What if We Move the Display/Controls to a PC?

▪ Using COTS man-machine interfaces (MMIs)

▪ e.g. Wonderware ‘InTouch’ (Schneider)

▪ Much better at visualizing the process

▪ Can monitor and/or change hundreds of values

▪ Data logging capabilities

▪ Uses standard PLC protocols

▪ e.g. Modbus, ProfiNet, DeviceNet, etc.

▪ Drawbacks:

▪ Target needs a database of accessible variables

▪ Requires target resident code

▪ Adds overhead, complexity and cost

▪ COTS MMIs are typically for end use

▪ Could be useful during development 
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MCU
RS-232C,  

RS485, TCP/IP, 
USB, other

Database

Data (RAM)



Debugging RTOS-Based Systems – ARM CoreSight Debug Port

▪ Core debugging:

▪ Halting

▪ Single stepping

▪ Resume

▪ Reset

▪ Register accesses

▪ Up to 8 hardware breakpoints

▪ Up to 4 hardware watchpoints

▪ Optional instruction trace

▪ Data trace

▪ Instrumentation trace (printf() like) – 32 ch

▪ Profiling counters

▪ PC sampling

▪ On-the-fly memory and I/O accesses

▪ Can be a security risk for deployed systems though
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USB
or

Ethernet JTAG

Segger J-Link

CoreSight
(Debug Port)

CPU
(Cortex-M)

Memory
+

I/O

Intrusive Non-Intrusive

Cortex-M



Debugger Live Watch

▪ Debuggers have offered Live Watch for years

▪ Uses the on-the-fly-feature of the Cortex-M

▪ Typically only displays numerical values

▪ Difficult to see trends and orders of magnitudes

▪ Choice of Decimal, Hex, Float, etc.

▪ Update rate is typically 1 Hz
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Micriµm’s µC/Probe, Graphical Live Watch®
(www.micrium.com)



µC/Probe, Graphical Live Watch®

▪ µC/Probe is an MMI for embedded systems

▪ Use the .ELF as the database (same as downloaded code)

▪ Like a doctor’s stethoscope (non-intrusive)

▪ Adding graphics capabilities to Live Watch

▪ Display or change values numerically or graphically

▪ A universal tool that interfaces to any target:

▪ 8-, 16-, 32-, 64-bit and DSPs

▪ No CPU intervention with Cortex-M

▪ Requires target resident code if not using the debug 
port:

▪ RS232C, TCP/IP or USB

▪ For bare metal or RTOS-Based applications

▪ Micriµm’s RTOS and TCP/IP awareness
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Your
Code

RTOS
(Optional)

Libraries

Compiler
Assembler

Linker
Debugger

Cortex-M
Target

.ELF

IDE

µC/Probe

.ELF

CDF (I/Os)

CSF (Custom Symbols)

On-the-Fly
Memory & I/O

Access



µC/Probe, Graphical Live Watch®

▪ (1) Load the .ELF from the build

▪ You have access to all global variables by their name

▪ (2) Drag-and-drop graphical objects from the 
palette

▪ (3) Assign variables (by name) to:

▪ Gauges, meters, bar graphs, cylinders, etc.

▪ Numeric indicators, sliders, switches, etc.

▪ Built-in oscilloscope (up to 8 channels)

▪ Excel spreadsheet interface

▪ Scripting

▪ Terminal window

▪ (4) Run – starts collecting the current value of the 
selected variables.

▪ Don’t have to stop the target!
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(1) Target Variables

(2) Drag-and-Drop
Graphical Objects

(3) Assign to Variable
(4) Run



µC/Probe, Graphical Live Watch® - Advanced Features

▪ 8-channel oscilloscope

▪ No need to instrument your code and bring out signals

▪ Charts (trends) 

▪ Excel spreadsheet interface

▪ Terminal window

▪ RTOS awareness

▪ CPU usage of a per-task basis

▪ ISR and task stack usage on a per-task basis

▪ Status of all kernel objects

▪ TCP/IP Awareness

▪ Buffer usage

▪ Interface status (Ethernet or Wi-Fi)

▪ Data transfer rates

▪ More 
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Micrium’s µC/ProbeTM



µC/Probe DEMO
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Segger’s SystemView
(www.segger.com)



Segger’s SystemView

▪ Typically used in an RTOS-based system

▪ The RTOS needs to be ‘instrumented’

▪ Supports:

▪ µC/OS-III, 

▪ Micrium OS Kernel, 

▪ embOS and 

▪ FreeRTOS

▪ Events are ‘recorded’ into a RAM buffer

▪ ISR enter/exit

▪ Semaphore pend/post

▪ Mutex pend/post

▪ Message queue pend/post

▪ User Events

▪ Etc.
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RAM 
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Debugging RTOS-Based Systems – Segger’s SystemView

▪ Displays the execution profile of RTOS-based systems

▪ Displayed live

▪ Trigger on any task or ISR

▪ Visualizing the execution profile of an application

▪ Helps confirm the expected behavior of your system

▪ Measures CPU usage on a per-task basis

▪ Min/Max/Avg task run time

▪ Counts the number of task executions

▪ Display the occurrence of ‘events’ in your code 

▪ Traces can be saved for post-analysis or record 
keeping

▪ www.Segger.com

80



SystemView Demo
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Debugging RTOS-based Systems



Tools for Testing/Debugging RTOS-based Systems

83

CoreSight
(Debug Port)

CPU
(Cortex-M)

Memory
+

I/O

Intrusive Non-Intrusive

Cortex-M

Debugger Interface
(Segger J-Link)

Toolchain
(IDE: Editor/Compiler/Assembler/Linker/Debugger)

Windows PC

µC/Probe

SystemView

µC/Probe



Detecting Stack Overflows – Detected with µC/Probe 
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Red shows stack close to overflowing



Interrupt Disable Time – Detected with µC/Probe 
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Long interrupt disable time affects system responsiveness



Priority Inversions Problem – Detected with SystemView
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1 2

3 4

5

6

7

8

9

Priority Inversion caused by using a Semaphore:

AppLPT

AppHPT

Semaphore

Shared
Resource

A

B

C

OSSemPend(&Semaphore, Timeout);

//Access the Shared Resource

OSSemPost(&Semaphore);

OSSemPend(&Semaphore, Timeout);

//Access the Shared Resource

OSSemPost(&Semaphore);

UNBOUNDED Priority Inversion



Priority Inversion Solution – Confirmed with SystemView
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1 2

3 4

5 6

87

9 10

11

Unbounded Priority Inversion eliminated by using a Mutex

AppLPT

AppHPT

Mutex

Shared
Resource

A

B

C

OSMutexPend(&Mutex, Timeout);

//Access the Shared Resource

OSMutexPost(&Mutex);

OSMutexPend(&Mutex, Timeout);

//Access the Shared Resource

OSMutexPost(&Mutex);

BOUNDED Priority Inversion



Deadlock Problem
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Task A

Task B

Mutex1

Shared
Resource

#1

OSMutexPend(&Mutex1, Timeout);

OSMutexPend(&Mutex2, Timeout);

//Access the Shared Resource

OSMutexPost(&Mutex2);

OSMutexPost(&Mutex1);

OSMutexPend(&Mutex2, Timeout);

OSMutexPend(&Mutex1, Timeout);

//Access the Shared Resource

OSMutexPost(&Mutex1);

OSMutexPost(&Mutex2);

Shared
Resource

#2

Mutex2



Deadlocks - Detected with µC/Probe 
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Two or more tasks would stop executing



Starvation - Detected with µC/Probe 

91

High CPU usage for high-priority task(s) can starve low-priority tasks



Starvation - Detected with SystemView
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Excessive CPU Usage means that low-priority tasks are subject to starvation



Code Execution Time - Detected with SystemView
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SysTick ISR execution time 
longer than usual!?!

1

2

3



Code Execution Time – Displayed with µC/Probe 
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Scaled from Free-Running counter counts to microseconds

elapsed_time_start(n);

// Code to measure

elapsed_time_stop(n); 

Code instrumented with Elapsed Time measurement functions:

void  elapsed_time_start (uint32_t  i)

{

elapsed_time_tbl[i].start = ARM_CM_DWT_CYCCNT;

}

void  elapsed_time_stop (uint32_t  i)

{

uint32_t       stop;

ELAPSED_TIME  *p_tbl;

stop           = ARM_CM_DWT_CYCCNT;

p_tbl = &elapsed_time_tbl[i];

p_tbl->current = stop - p_tbl->start;

if (p_tbl->max < p_tbl->current) {

p_tbl->max = p_tbl->current;

}

if (p_tbl->min > p_tbl->current) {

p_tbl->min = p_tbl->current;

}

}



Using an RTOS – Industrial Engine Control



Natural Gas Compressor Stations (~300-600 RPM)

96

Recip Compressor
(Dual acting – Head and Crank)

Flywheel
Teeth used to measure velocity

Power Cylinders
(6 to 20)

TDC #1
Sensor for Reference

CAM
Sensor for Power  Stroke Reference



Using an RTOS – Industrial Engine Control

▪ Controls

▪ Sequencing (Start, Load, Stop, Shutdown)

▪ Ignition (Time Critical)

▪ Fuel Management

▪ Fuel Injection (Time Critical)

▪ Air Management 

▪ Turbo charged

▪ Valve Management

▪ Suction, Discharge, Bypass

▪ Compressor control

▪ Loading with pockets (Open/Close, up to 32)

▪ Lubrication control

▪ Monitoring

▪ Temperatures

▪ Pressures

▪ Flow

▪ Etc.
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Engine 
Control

Ethernet (TCP/IP)
Or Industrial Bus

File System

Temperatures 10s)
Pressures (10s)
Speed (2+)
Position (2+)
Switches (10s)
Etc.

User Interface

Spark Plugs (6-40)
Fuel Injectors (6-20)
Actuators (10s)
Solenoids (10s)
Relays (10s)
Lamps (10s)
Etc.



Ignition – Time Critical
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TDC Cyl. X

X
Dwell

(5-18 degrees)

Time
@600 RPM = 1.38 to 5.00 ms

Flywheel
Teeth

Velocity

Dly to Fire
N N+1 N+2

Time to compute next firing (555 uS at 600 RPM)

180 Teeth Ring Gear used for Timing

3 Sensors needed for timing:
1) Flywheel position
2) TDC #1
3) CAM



Fuel Injector Open

Fuel Injection – Time Critical
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TDC Cyl. XInjector
Close

(180 - Y degrees)

Time

Flywheel
Teeth

Velocity

Dly to Close

Time to compute injector closing firing  (555 uS at 600 RPM)

Injector
Open

(180 - X degrees)

Dly to Open

3 Sensors needed for timing:
1) Flywheel position
2) TDC #1
3) CAM



Using an RTOS – Smart Thermostat



Using an RTOS – An IoT Thermostat

▪ TCP/IP + WiFi

▪ Storage

▪ Rotary and push button interface

▪ Liquid Crystal Display (LCD)

▪ Backlight (brightness)

▪ Battery (monitoring)

▪ Sensors
▪ Temperature

▪ Humidity

▪ Voltage

▪ Presence

▪ Etc.

▪ Controls
▪ Heating Element

▪ A/C Compressor

▪ Fan

105

Smart
Thermostat

Heater (On/Off)

A/C Compressor (On/Off)

Fan (On/Off)

TCP/IP + WiFi

File System

GUI

Humidity

Temperature

Battery Level

Backlight (PWM)

Switches



Using an RTOS – An IoT Thermostat – Task Diagram
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Heater (On/Off)
A/C Compressor (On/Off)
Fan (On/Off)

Switches

Humidity

Temperature
Battery Level

Backlight (PWM)

Read
Sensors

TCP/IP

User
I/F

Data
Logging

HVAC
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Recommendations



Recommendations - RTOS

▪ Keep the number of priorities low (< 32)

▪ More efficient scheduling

▪ RTOS APIs consume CPU cycles

▪ Be aware of this

▪ Don’t enable the FPU if not needed

▪ Create graphical models of your application.  Use:

▪ Don’t have too many tasks

▪ Requires more RAM

▪ Don’t have too few tasks

▪ Defeats the purpose of having an RTOS

▪ Keep ISRs short

▪ Clear the interrupt, signal a task

▪ Use non-Kernel Aware ISRs only when absolutely needed

▪ Set task priorities at design time

▪ Don’t change task priorities at run-time

▪ Use Mutexes instead of Semaphores for resource sharing

▪ Avoid using round-robin scheduling

▪ Round-robin scheduling starve lower priority tasks
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Timeout

Timeout
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Flag(s)
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HEAP

Recommendations - Storage

▪ Allocate all RTOS objects statically

▪ Avoid malloc() and free()

▪ Don’t delete RTOS objects at run-time

▪ If you malloc() don’t free()

▪ The task could own resources that other tasks need

▪ Avoid excessive stack usage

▪ Don’t allocate large arrays on task stacks

▪ Some linkers will give you stack usage per function

▪ Monitor stack usage using a Kernel aware debugger or 
µC/Probe

▪ Keep data in scope when using Message Queues
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Recommendations – Use an MPU

▪ Don’t pass data from one task stack to another

▪ All kernel objects should be allocated in Kernel space

▪ User task simply pass by reference

▪ Separate the application by Process

▪ Most tasks should be non-privileged

▪ They cannot disable interrupts!

▪ Determine what to do when an access violation is 
detected

▪ Set the XN-bit (eXecute Never bit) for RAM

▪ Limit peripheral access to its own process

▪ Reduce interprocess communication

▪ Log/report faults to developers

▪ Create ‘named sections’ for your RAM

▪ Makes it easier to map sections with the linker

▪ Don’t use a global heap

▪ You cannot protect heap data with an MPU
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Recommendations – Use RTOS Aware Tools

▪ Segger SystemView (www.segger.com)

▪ Detect priority inversions

▪ Detect starvation

▪ Detect deadlocks

▪ Measure code execution times

▪ Validate priorities

▪ Etc.

▪ Use tools designed to debug RTOS-based applications

▪ Micrium’s µC/Probe (www.micrium.com)

▪ Provide ‘visibility’ in your running application

▪ Any application variable can be displayed

▪ Kernel Awareness

▪ Monitor stack usage to detect potential overflows

▪ Detect starvation

▪ Detect deadlocks

▪ Monitor CPU usage 

▪ Monitor interrupt disable time

▪ Etc.

▪ Simulate hardware

▪ Change setpoints

▪ Etc.
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References – Books

▪ MicroC/OS-II, The Real-Time Kernel, Jean J. Labrosse, 
978-1578201037

▪ A Practitioner’s Handbook for Real-Time Analysis: Guide 
to Rate Monotonic Analysis for Real-Time Systems, by 
Mark Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and 
Michael Gonzales Harbour, 978-0792393610

▪ The Definitive Guide to ARM Cortex-M3 and Cortex-M4 
Processors, Joseph Yiu, 978-0124080829

▪ µC/OS-III, The Real-Time Kernel, and the Freescale 
Kinetis ARM Cortex-M4, Jean J. Labrosse, 978-
0982337523

▪ µC/OS-III, The Real-Time Kernel, and the Infineon 
XMC4500, Jean J. Labrosse, 978-1935772200

▪ µC/OS-III, The Real-Time Kernel, and the NXP LPC1700, 
Jean J. Labrosse, 978-0982337554

▪ µC/OS-III, The Real-Time Kernel, and the Renesas RX62N, 
Jean J. Labrosse, 978-0982337578

▪ µC/OS-III, The Real-Time Kernel, and the Renesas
SH7216, Jean J. Labrosse, 978-0982337547

▪ µC/OS-III, The Real-Time Kernel, for the STM32 ARM 
Cortex-M3, Jean J. Labrosse, 978-0982337530

▪ µC/OS-III, The Real-Time Kernel, and the Stellaris MCUs, 
Jean J. Labrosse, 978-0982337561
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▪ Silicon Labs Integrated Development Environment (FREE):

▪ https://www.silabs.com/products/development-tools/software/simplicity-studio

▪ Silicon Labs Development Boards:

▪ https://www.silabs.com/products/development-tools/mcu

▪ Silicon Labs / Micrium OS Kernel (FREE when using Silicon Labs chips):

▪ https://www.silabs.com/products/development-tools/software/micrium-os

▪ Micrium’s µC/Probe, Graphical Live Watch® (FREE Educational Version):

▪ https://www.micrium.com/ucprobe/trial/

▪ Segger’s SystemView (FREE Evaluation Version):

▪ https://www.segger.com/downloads/free-utilities/

References - Development Tools
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References – Videos

▪ Getting Started with Micrium OS, 10 Episode Series

▪ https://www.youtube.com/playlist?list=PL-
awFRrdECXu9I7ybAl5tEgwn7BQF6N56

▪ SystemView for µC/OS-III

▪ https://www.youtube.com/watch?v=1Le5YwSADTs

▪ Micrium, Internet of Things

▪ https://www.micrium.com/training/videos/#foobox-3/0/SDJVFr4VUHA
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References – Websites

▪ Silicon Labs:

▪ Micrium OS Kernel (i.e. RTOS)  FREE with Silicon Labs MCUs

▪ Free development tools: Simplicity Studio

▪ www.SiLabs.com

▪ Micrium (a Silicon Labs Business Unit):

▪ µC/OS-II and µC/OS-III RTOS and middleware

▪ µC/Probe

▪ Blogs

▪ www.Micrium.com

▪ Segger:

▪ embOS RTOS and middleware

▪ SystemView and J-Links

▪ www.Segger.com
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S I L A B S . C O M

Thank you! 


