SILICON LABS

An Introduction to Real-Time Operating Systems (a.k.a. RTOSs)

MARCH 2019

JEAN J. LABROSSE

Introduction

CHC/0s.

The Reat;
Forthe KinelisAR;’T"!anr:n: y
Xy

Author

IC/OS series of software and books \ ©
Numerous articles and blogs ‘

Lecturer ILC/OS =1 MicroC/0S-II
Conferences e =
Training oot @ S
s &
2 e
Entrepreneur

®

Micripm founder (acquired by Silicon Labs in 2016)
SILICON LABS

Embedded Systems Innovator

Embedded Computer Design Innovator of the Year award (2015)

Jean.Labrosse@SilLabs.com

Distinguished Engineer, Software Architect

www.silabs.com WWW.Mmicrium.com

mailto:Jean.Labrosse@SiLabs.com
http://www.silabs.com/
http://www.micrium.com/

Assumptions about attendees

= Understand Microprocessors
8-, 16- or 32-bit CPUs

Instruction Sets

= Memory
|/Os (Peripherals)

Interrupts

= Computer Science

= Knowledge of C and assembly language
= Compilers, Assemblers, Linkers
= Understand Data Structure

= Familiar with Software Debugging

Agenda

Agenda

= About Silicon Labs / Micrium

Bare Metal Systems

What is an RTOS?

RTOS basics

RTOS Services

Seeing Inside Live Embedded Systems

Debugging RTOS-Based Systems

RTOS Usage Examples

Recommendations

References

About Silicon Labs / Micripm

Silicon Labs - A Global Company

°
) -

°
EMPLOYEES WORLDWIDE

HEADQUARTERED IN

AUSTIN

INTERNATIONAL HQ

SINGAPORE

@ R&D Centers @ Sales Offices

|

| £

7

e
i)
-

,
! \j
N : ¥ =
FEEY
AN

IROENNENOE (5)
tEEHE

Proprietary

=

TR

dull l'l‘p.”

Serving a Broad Range of Customers and Application Areas

30 million hours saved We’ve shipped

yearly with smart metering applications more than 150 million
mesh networking devices

Boosted energy capacity by 36 GW in 5 years in We help coordinat.e
7.3 million solar inverters 90% of Internet traffic

We’re in more than On board 100% of cherry red electric
360,000 EV/HEV cars Tesla roadsters currently

orbiting the sun

Introducing Micripm

= Provider of High Quality Embedded Software

RTOS, protocol stacks and other components

Remarkably clean code

Outstanding documentation

Top-notch technical support

Debug tools
= Founded in 1999, Acquired by Silicon Labs in 2016.

o MR

T s I B TSR L L . .
E% = i 1 " = Based in the US (South Florida)
TR L - " s = | |

' | | o 1 Provider of high-quality embedded software

= FREE for Educational Use

® Licensed for commercial use

HC/OS-Il - On Mars

Tom Nolan, Operations Engineer
NASA Jet Propulsion Laboratory

“Sample Analysis at Mars is a suite of three instruments: a gas chromatograph, a
tunable laser spectrometer, and a guadrupole mass spectrometer, together with a
number of supporting subsystems, including vacuum pumps, pyrolysis ovens, and a

robotic sample manipulation system that handles solid samples from the planetary
surface.

“| wrote the on-board software, which consists of about 20,000 lines of C code, and
runs on top of the uC/OS-I1 platform. The software resides in nonvolatile memory
inside the instrument, and boots up when power is applied. The on-board computer
is all custom electronics built to space flight standards, and the CPU is a radiation-
tolerant ColdFire processor. | adapted the Micrium ColdFire board-support

package for use on this computer, but other than that, the operating system is off-
the-shelf.

Micripm — Embedded Software

Software
RO NN components

CPU Core - Kernel (RTOS)

Interrupt Controller

External Bus Interface
Debug Interface FSMC / SRAM / NOR / NAND / CF

HC/Probe

Connectivity
System .
o File System

Power Supply SPI, IS, I’C

PLL Ethernet MAC TCP / IP
Clock Control CAN CA N
SysTick Timer USB 2.0 OTG FS/HS .

Watchdos USB (Host and Device)
chdogs USB 2.0 OTG FS
LCD Interface G U I
USART Modbus

III'I'I'II!.!Em!m}ﬂrﬂi‘ﬂ’?’!‘,!

Micripgm - A Tradition of Quality

‘2000 -

‘1993 -
HC/QS first
RTOS used
1992 — with ARM
Original processor
nC/0S

released

HC/OS-II first
used in DO-
178B
aerospace
project

Q.-

2009 —
MicriumPress
publishes
initial book in
uC/OS-lII
series

Top
commercial
RTOS
ranking for
Micrium in
annual UBM
survey

Micripgm — Semiconductor Partners

:

ARM

ANALOG
DEVICES

Altmel

©
FUJITSU

(infineon

&S Microsemi

NXO

RENESAS

I

SILICON LABS

ST

life.augmented

Wi} TEXAS INSTRUMENTS

TOSHIBA

Leading Innovation >>>

& XILINX.

Bare Metal Systems (a.k.a. Super Loops or, Single Threaded)

Bare Metal — Super Loop

void main (void)

{
Init();

lowPriority = === === - e e e e e e e e e e e e - - High Priority
void LP_ISR (void) void HP_ ISR (void)
{ {
Clear Interrupt; Clear Interrupt;
Perform Work; Perform Work;

for (;;) {
Task 1();

Task 3();

Lower Priority ISR -

Higher Priority ISR

16

Infinite Loop

Bare Metal - Benefits

= Used in fairly simple applications

= You only need a single stack
= Set the SP once at startup
= Requires less RAM

= High performance

= Highly responsive to interrupts
= But, ISRs often do too much of the work that should be handled by a task

= |nterrupt disable time dictated by your application

= You can use non-reentrant functions

17

Bare Metal - Drawbacks

18

Difficult to ensure that each operation will meet its deadlines

= All code in the main() loop has the same priority

If one function call takes longer than expected, the responsiveness of the whole system can suffer

= Excessive polling waste CPU time

= Hardware failure can lock up the application

void main (void)

{

Initialization;

while (1) {
ADC_Read();”///
SPI _Read();
USB_Packet() ;
LCD_Update() ;

Audio_Decode() ;
File Write();

/'

?\

void ADC_Read (void)

{

Initialize ADC;

while (ADC Converter NOT ready) ({

4

}

Process converted wvalue;

Unexpected delays
and possible lockup

Bare Metal - Drawbacks

19

= High priority code must be placed in ISRs

= Long ISRs may affect the responsiveness of the system

= Coordination between ISR and main() is difficult

void main (void)
{
Initialization;
while (1) {
ADC Read() ;
SPI _Read();

LCD_Update() ;
Audio_Decode() ;
File Write();

USB_Process_Packet()

T~

Could take a long time before
the packet gets processed

/,lvoid USB_ISR (void)

{

Clear Interrupt;

Read Packet;
Indicate packet received;
-}

Bare Metal - Drawbacks

The responsiveness of the application can change as you add code
= Code is often duplicated to compensate for lack of responsiveness

= Counters are used to limit the execution rate

Large applications are difficult to maintain

= Difficult to coordinate the effort of multiple developers and ensure timing
requirements are met

= Changes to one portion of the code can impact another Counters to limit execution rate
while (1) {
= Difficult to use protocol stacks Code duplication ADC_Read () ;
. . o
= Many of the protocol stacks assume an RTOS while (1) e (S(;I °RZ:()j ()__ 0) {
= Difficult to do battery management iﬁg—ﬁgjjé;'() ; L}]SB Packet () ;
SPI Read () ; LCD Update () ;
USB_Packet () ; if ((i % 32) == 0) {
LCD_Update() ; Audio Decode() ;
Audio Decode () ; }
File Write(); File Write();

LCD Update() ; i++;

20

What Is An RTOS? (a.k.a. Real-Time Kernel)

What Is An RTOS? - Multitasking

= Software that manages the time and resources of a CPU
= Application is split into multiple tasks
= The RTOS’s job is to run the most important task that is ready-to-run

= On asingle CPU, only one task executes at any given time

Tasks that are ready-to-run

High Low
= T 212/ Priority

(Task) I (Task) I (Task }__ I (Task)
(Code+Data+Stack) (Code+Data+Stack) (Code+Data+Stack) (Code+Data+Stack)

Events
Signals/Messages
from Tasks or ISRs

Select

Highest Priority Task

CPU+FPU+MPU

(8, 16, 32 or 64-bit)

22

What Is An RTOS? — Code That You Add To Your Application

23

= An RTOS is either provided in source form or as a library that you link to your code

" Most RTOSs are written in C

= Assembly language code is needed to adapt the RTOS to different CPU architectures (called a Port)

= This is provided by the RTOS supplier

Embedded System

/

Application
Code + Data

-)

RTOS .
Code+Data C?ptmnal
(CPU Independent) Middleware
Written in C Code+Data

(TCP/IP)
(Gul)
(File System)
RTOS (USB stacks)
Code (Bluetooth)

(CPU Dependent)

k (etc.)

—/

Written in Assembly Language

What Is An RTOS? — Provide Services To Your Application

24

Tasks

OSTaskCreate(..)
OSTaskDel(..)
OSTaskSuspend (. .)
OSTaskResume (. .)
OSTaskChangePrio ()

Application Optional Middleware

(Code + Data) (Code + Data)

Time

OSTimeDly (. .)
OSTimeD1yHMSM(. .)
OSTimeDlyResume (. .)
OSTimeGet (. .)
OSTimeSet(..)

(TCP/IP, GUI, File System, USB Stacks, Bluetooth, Etc.)

RTOS

Semaphores Event Flags Mutexes Queues Timers Memory Blocks

OSSemCreate(. .) OSFlagCreate(..) OSMutexCreate (. .) OSQCreate(..) OSTmrCreate(..) OSMemCreate(..)
OSSemDel (. .) OSFlagDel(..) OSMutexDel (..) OosQDel(..) OSTmrDel(..) OSMemDel (. .)
OSSemPend (. .) OSFlagPend (. .) OSMutexPend (. .) OSQPend (. .) OSTmrStart(..) OSMemGet (. .)
OSSemPost(..) OSFlagPost(..) OSMutexPost(..) OSQPost(..) OSTmrStop(. .) OSMemPut (. .)

CPU + FPU (opt) + MPU (opt)

What Is An RTOS? - Benefits

25

Creates a framework for developing applications
= Facilitate teams of multiple developers

Allows you to split and prioritize the application code
= The RTOS always runs the highest priority task that is ready
= Adding low-priority tasks don’t affect the responsiveness of high priority tasks

Tasks wait for events
= A task doesn’t consume any CPU time while waiting — avoids polling

It’s possible to meet all the deadlines of an application
= Rate Monotonic Analysis (RMA) could be used to determine schedulability

Most RTOSs have undergone thorough testing
= Some are third-party certifiable, and even certified (DO-178B, IEC-61508, IEC-62304, etc.)
= |t’s unlikely that you will find bugs in RTOSs

RTOSs typically support many different CPU architectures

Very easy to add power management

i Canege Messs Lnaarwry

A Practitioner’s
Handbook for
Real Time Analysis:

What Is An RTOS? - Benefits

26

= Provides services to your application

= RTOSs make it easy to add middleware components

ISR management

Task management

Time management

Resource management

ISR and inter-task communication
Memory management

Etc.

TCP/IP stack

USB stacks

File System

Graphical User Interface (GUI)
Etc.

What Is An RTOS? - Drawbacks

= The RTOS itself is code and thus requires more Flash
= Typically between 6-20 Kbytes

= An RTOS requires extra RAM

= Each task requires its own stack
= The size of each task depends on the application

= Each task needs to be assigned a Task Control Block (TCB)
= About 32 to 128 bytes of RAM

= About 256 bytes for the RTOS variables

= You have to assign task priorities

= Deciding on what priority to give tasks is not always trivial

= The services provided by the RTOS consume CPU time
= QOverhead is typically 2-5% of the CPU cycles, could be more

= There is a learning curve associated with the RTOS you select

27

What Is An RTOS? — Do You Need One?

28

Do you have some real-time requirements?

Do you have independent tasks?

= User interface, control loops, communications, etc.

Do you have tasks that could starve other tasks?

= e.g. updating a graphics display, receiving an Ethernet frame, encryption, etc.
Do you have multiple programmers working on different portions of your project?
Is portability and reuse important?

Does your product need additional middleware components?
= TCP/IP stack, USB stack, GUI, File System, Bluetooth, etc.

Do you have enough RAM to support multiple tasks?

= Flash memory is rarely a concern because most embedded systems have more Flash than RAM

Are you using a 32-bit CPU?

= You should consider using an RTOS

RTOS Basics

RTOS Basics — Tasks

30

= Each task:

Is assigned a priority based on its importance

Requires its own Stack

Manages its own variables, arrays and structures

Is typically an infinite loop
Possibly manages I/O devices

Contains YOUR application code

CPU STK MyTaskStk[MY TASK STK_SIZE];

void MyTask (void *p arg)
{

Local Variables;

Task initialization;
while (1) {
Wait for Event;
Perform task operation;

}
}

//

//

//

//

Task Stack

Task Code

Infinite Loop (Typ.)

Do something useful

/O

Device(s)

/ (Optional)

Variables
Arrays
Structures
(RAM)

RTOS Basics — Creating A Task

= You must tell the RTOS about the existence of a task:
= The RTOS provides a special API: OSTaskCreate () (or equivalent)

void OSTaskCreate (MyTask, // Address of code
&MyTaskStk[0], // Base of stack
MY TASK STK SIZE,// Size of stack

MY TASK PRIO, // Task priority

1)

= The RTOS assigns the task:
= |ts own set of CPU registers
= A Task Control Block (TCB)

31

CPU /0

Registers Device(s)

(CPU+FPU+MPU) .
/ (Optional)

Variables
Arrays
Structures
(RAM)

RTOS Basics — The Task’s Stack

32

= Each task requires its own stack
= | ocal variables
= Return addresses

= The size depends on what the task does

= Each task can have a different stack size

= When a task is created:

= The Top-Of-Stack is populated by with the initial values of CPU registers
= RO-Rn, Status Register, PC
» FPU registers (If the CPU has an FPU)

= The Bottom-of-Stack is populated with canary values
= Used to determine stack usage and detect stack overflows

= An RTOS task can scan each of the task stacks to compute actual CPU usage

= The Cortex-M33 processor has hardware Stack Limit detection
= A faultis generated if the SP is changed to be lower than the SP_Limit
= The RTOS can then terminate the offending task

PC

Status

R1

sp—>

Rn

SP_Limit >

(Cortex-M33)

Stack
Overflow
Area

Top-of-Stack
(High Memory Address)

Stack Growth

Bottom-of-Stack
(Low Memory Address)

RTOS Basics — Event Driven

void EachTask (void)
{

Task initialization;

while (1) {
Setup to wait for event;
Wait for MY event to occur;
Perform task operation;

}
}

= Only the highest-priority Ready task can execute

= QOther tasks will run when the current task decides to waits for its event
= Ready tasks are placed in the RTOS’s Ready List

= Tasks waiting for their event are placed in the Event Wait List ...

33

High Priority

—

Event Wait For
Occurs Event

{ |

Task Task

—
—

Task

Task

I ‘_>

—

Low Priority

RTOS Basics — Walit Lists

DMA Completion
Semaphore

Task waiting for
| DMA to complete

Printer Access
Mutex

Task waiting to Task waiting to Task waiting to
access printer access printer access printer
High Priority Low Priority
Tick List n "
(Delta List) Task waiting for Task waiting for Task waiting for
™ time to expire time to expire g IR IER) expire
2 Shortest Delay or Timeout Longest Delay or Timeout
Notes:

1) List of Task Control Blocks (TCBs)
2) Atask can bein 2 lists at the same time
(the second one would be the Tick List)

34

35

RTOSs are typically Preemptive

void Low Prio Task (void)
{
Task initialization;
while (1) {
Setup to wait for event;
Wait for event to occur;
Perform task operation;

}

{

void ISR (void)

Entering ISR;
Perform Work;

Signal or Send Message to Task;

Perform Work;
Leaving ISR;

// Optional

void High Prio Task (void)
{
Task initialization;
while (1) {
Setup to wait for event;
Wait for event to occur;
Perform task operation;

}

ISR

Event
Occurs

Low Priority Task

Signal
Task

RTOS Overhead

RTOS

Resumes

Task Wait For
Event

High Priority Task

RTOS
Resumes
Task

Low Priority Task

—

Time

RTOS Basics — RTOS and User Code run in Privileged Mode

= Without an MPU, RTOS tasks run in Privileged mode

= Access to all resources

= Done for performance reasons

= Drawbacks:
= Reliability of the system is in the hands of the application code

= |SRs and tasks have full access to the memory address space

Tasks can disable interrupts

Task stacks can overflow without detection

Code can execute out of RAM

= Susceptible to code injection attacks

A misbehaved task can take the whole system down

= Expensive to get safety certification for the whole product

36

RTOS Basics — Context Switch (without an MPU)

Task Stack Task Stack
(RAM) (RAM)
CPU Registers
+
FPU Registers
Restore Save
Task @ @)
Control
Block
(TCB)
1

Context
Switch

37

Task
Control
Block
(TcB)

Example using Cortex-M4

RTOSs are Event Driven

Type of Events

Data available from another task

From Kernel Aware Interrupts
= Timer expires

= DMA transfer completes

= Ethernet packet arrives

= etc.

An ISR or a task signals another task
= Through a semaphore

= Through an event flag

A mutex is released

39

Kernel Aware Interrupt Events

40

= Oftentimes, interrupts are events that tasks are wait for

= |Interrupts are more important than tasks

= Assuming, of course, that interrupts are enabled

= Kernel Aware (KA) ISRs:
= Need to notify the RTOS of ISR entry and exit

= Allows for nesting ISRs and avoid multiple scheduling

void MyISR (void)
{
Entering ISR;

Signal or send a message to a MyTask;

Leaving ISR;

= |SRs can be written directly in C with Cortex-M CPUs

Enter Signal Exit

ISR Level 3
Event
Occurs
ISR Level 2 I]
IEvent l
Occurs
ISR Level 1 -

Event

Occurs RTOS resumes which task?

v
=
=
===
=
=
==
=
=
=
==
=
=
—_—

No scheduling

Scheduling

Tasks can also generate events for other tasks

= |f a high-priority task generates an event that a low-priority task is waiting for, the high-priority task continues execution

Event
Occurs

High-Priority Task

When HPT waits for
its event to reoccur

= |f a low-priority task generates an event that a high-priority task is waiting for, the RTOS switches to the high-priority task

Context
Switch

High-Priority Task

When HPT waits for
its event to reoccur

Event
Occurs

41

non-Kernel Aware Interrupts

42

= Non-Kernel Aware (nKA) ISRs

ISRs that have priorities higher than Kernel Aware ones

= Your code MUST NOT make any RTOS API calls within these ISRs

Processors like the Cortex-M allow you to set the nKA boundary

= |n order of priority:

Reset

NMI (Non-Maskable Interrupts)

nKA ISRs

KA ISRs

Highest priority task

Lowest priority task (typ. The RTOS’s Idle Task)

Priority

Level

Highest

Interrupts
or —
Exceptions

Tasks —

Reset

M AL

Hard Fault

ISR 000

ISR 020

—

— nKAISRs
nKA

ISR Ox40

ISR OxiB0

ISR Ox80

ISR OxAOD

I5R OxCO

I5R OxEO

Boundary

— KA ISRs

ISRs

Ny

Lowest

AN

Task Pric 0

Task Prio 1

Task Prio 2

Task Pric N-2

Task Pric N-1

AN

Tasks

—— RTOS Tasks

The Tick Interrupts — Just another source of Events!

= Most RTOS have a time-based interrupt] r—wp.lms
= Called the System Tick or Clock Tick ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

= Requires a hardware timer ‘
* The Cortex-M has a dedicated RTOS timer called the SysTick Typical RTOS Tick

»

= The System Tick is used to provide coarse:

= Delay (or sleep)
= Timeouts on Wait for Event RTOS APIs

= A System Tick is not mandatory!

= |f you don’t need time delays or timeouts you can remove it

» Typically interrupts at regular intervals —» 3ms
yp Y P g je— 5ms —>le 17 ms > l:: 5ms —¥

= Not power-efficient ‘ ‘ ‘ ‘

= Dynamic tick (a.k.a. tick suppression) is more efficient

A 4

= Requires reconfiguring the tick timer at each interrupt
. guring P Dynamic RTOS Tick

43

RTOS Services

RTOS Services — Time Delays (i.e. Sleep)

= A task can put itself to sleep by calling RTOS APIs:

void Task (void)
= OSTimeDly() // Delay for N ticks ot iritiotisetion:
= OSTimeDIlyHMSM() // Delay for Hours, Minutes, Seconds, Milliseconds e For W ticke;
Do work;
= Can be used to wake up a task at regular intervals)

Control loops

Updating a display

Scanning a keyboard

Letting other tasks a chance to run
= Etc.

Z N Ticks

45

RTOS Services — Soft Timers N

= Some RTOSs can provide soft timers which can be used to ooy osrenng | AUTO Repeat Timer
perform actions either once or at regular intervals

= A timer is an RTOS object containing: ks "y
(ticks)

= An optional start delay
Time

= The amount of time to expire

v

= A pointer to a callback to perform an action upon expiring T T

. Callback Callback Callback
» The option to auto repeat Called Called Called

= You can have an unlimited number of timers
= Each timer must be created before it can be used

= All of them execute in the context of a single task (i.e. the timer task) OSTmiCroate) OSTmrStart)

= All timers are typically managed by an RTOS internal task

= Example usage: Ticks o One-Shot Timer

= Task opens a valve, starts a timer to close the valve after X seconds
Time
= Task starts a timer to blinkalight ¥ >

Callback
Called

46

RTOS Services — Sharing A Resource — Using a Semaphore

47

» What is a resource?

= Shared memory, variables, arrays, structures

= |/O devices

= RTOSs used to use Semaphores for resource sharing
= A Semaphore is an RTOS object

= An semaphore must be created before it can be used
= OSSemCreate()

= Semaphores are subject to priority inversions ...

void EachTask (void)

{
Task initialization;
while (1) {

Acquire Semaphore;
Access the resource;
Relinquish the Semaphore;

}
}

Access

Shared
i Resource

(Memory or 1/0)

0SSemPend()
Acquire

Semaphore

2]

Timeout

Relinquish
0SSemPost()

Priority Inversions Problem With Semaphores

48

HPT ISR

MPT ISR

HPT Task

MPT Task

LPT Task

OSSemPend (&Semaphore, Timeout) ; I

//Access the Shared Resource AppLPT
N@
\@I\%‘ : Shared
|

OSSemPost (&Semaphore) ;

Resource

) Semaphore
OSSemPend (&Semaphore, Timeout) ;

//Access the Shared Resource AppHPT
OSSemPost (&Semaphore) ; I

4 UNBOUNDED Priority Inversion

v ﬂl
.

A
v ! v

5B i

Owns the Resource (i.e. Semaphore)

RTOS Services — Sharing A Resource

49

= RTOSs typically provide resource sharing APls
= Called Mutual Exclusion Semaphores (Mutex)
= A Mutex is an RTOS object containing:
* The key (binary value)
= The priority of the mutex owner
= A list of task waiting to acquire the mutex
= An mutex must be created before it can be used
= OSMutexCreate()
= Mutex have built-in priority inheritance
= Eliminates unbounded priority inversions
= There could be multiple mutexes in a system

= Each protecting access to a different resource

void EachTask (void)

{
Task initialization;
while (1) {

Acquire Mutex;
Access the resource;
Relinquish the Mutex;

}

Access Shared
o Resource

OSMutexPend() (Memory or 1/0)
Acquire

Relinquish
OSMutexPost()

Timeout

Unbounded Priority Inversion Avoided with Mutex

50

HPT ISR

MPT ISR

HPT Task

MPT Task

LPT Task

OSMutexPend (&Mutex, Timeout) ;
//Access the Shared Resource AppLPT
OSMutexPost (&Mutex) ;

OSMutexPend (&Mutex, Timeout) ;

//Access the Shared Resource AppHPT
OSMutexPost (&Mutex) ;

/

N4
\@:\g : Shared

Mutex

Resource

Priority of LPT raised to HPT

Priority of LPT lowered back to original priority

//_

Owns the Resource (i.e. Mutex)

RTOS Services — Signaling A Task Using Semaphores F

= Semaphores can be used to signal a task
= Called from ISR or Task

= Does not contain data

= A Semaphore is an RTOS object containing:

= A counter to accumulate unprocessed signals

= A list of tasks waiting for the event to occur

void Task (void)

= Typically only 1 task waits on a given semaphore !

Task Initialization;

void TaskEventISR (void) while (1) {
= An semaphore must be created before it can be used R Wait on Semaphore;
Signal Semaphore;) (Sreisersm Viekelsy
= OSSemCreate() } |

Semaphore

Signal Wait
osSsemPost() 0SSemPend|()

Z

Timeout

51

RTOS Services — Signaling Task(s) Using Event Flags

52

= Event Flags are a grouping of bits used to signal the
occurrence of more than one events

= Signals from ISRs or Tasks

= Only tasks can wait for events

= Does not contain data (just happened or not)

= An Event Flag group must be created before it can be used

= OSFlagCreate()

= A Event Flag group is an RTOS object containing:

= The current state of each of the N-bits in a group (i.e. 1 or 0)
= Each corresponds to an event
= Typically 8, 16 or 32 bits per group

= A list of tasks waiting on the Event Flag group
= Each task waits for desired bit (OR-condition or AND-condition)

void TaskEventISR (void)
{

Clear interrupt;

Signal Event Flag Group;
}

OSFlagPost()
Set/Clear
Flag(s)

Set/Clear
Flag(s)

OSFlagPost()

Event
Flag
Group

By
™

{

}

void Task (void)

Task Initialization;

while (1) {
Wait on Event Flag Group;
Perform work;

}

Wait for ‘ALL’ of
the desired flags

| ~, OSFlagPend()
N/
Flag(s) Z
Timeout

Wait for ‘ANY’ of

the desired flags
OSFlagPend()
— j:} » Task
M
Flag(s) 8

Timeout

RTOS Services — Sending Messages To Task(s) 1T

Messages can be sent from an ISR or a task to other task(s)

Messages are typically pointers to data

= The data sent depends on the application

.. . void ReceiverTask (void)
" The data must remain in scope until no longer referenced Producers {
Task initialization;
while (1) {
Wait for Message;
Process data;

}

Message queues are used for sending messages

A message queue is an RTOS object containing: .

= A queue that can hold ‘N’ messages
= Queues can either be FIFO or LIFO

Consumer(s)
= A list of tasks waiting for messages to arrive at the queue

= Typically only 1 task waits on a specific message queue
ypically only p geq Send - Receive

0SQPost() 4 osQPend()

= An message queue must be created before it can be used

= OSQCreate() 2
void SenderTask (void) Timeout
{
Task initialization;
while (1) {
Produce data; Data
Send to task;
}
}

53

Quick Break - ~¥15 Minutes

Process Separation

Process Separation — Process Model (Requires an MPU or MMU)

Tasks are grouped by processes

= Can have multiple tasks per process

= Memory of one process is not accessible to other processes
= Unless they share a common memory space /

ISRs typically have full access to memory

= Would be very complex otherwise

I’ll assume a Cortex-M MPU from now on

User tasks can’t disable/enable interrupts

H Process 3

= Requires an SVC handler \Memw
Task stack overflows can be detected with the MPU

= Not needed for ARMv8-M because of stack limit registers

= Also cannot alter the interrupt controller settings
= This is a P/NP feature, not an MPU one

MPU configuration consist of setting up a process table for each task

57

Process Separation — Context Switch

Task Stack Task Stack
(RAM) (RAM)
CPU Registers A
+
FPU Registers Y
Task Task
Control Control
Block Block
(TCB) (TCB)
MPU
Process Table Load
(ROM]
L [0}
2
‘N’ Regions co nte}(t

Eg Switch

58

Process Separation — Expanded Process View

= A task can have up to 8 or 16 regions o

= (1) Full access to code space
= Typically don’t limit access to code LD

= (2) At least one region for process peripheral —1©
= May need more than one Variabies

Task 4 - Stack

= (3) One region to access the RAM for the process .
= On ARMV7-M, size must be a power of 2 o sk stac +

Task 2 - Stack

= On ARMvV8-M, size doesn’t have to be a power of 2

Task 1 - Stack

= (4) One region stack overflow detection
= . see next slide

= Not needed for ARMv8-M +

= (5) This is unused area
= On ARMv8-M, this can be as small as 32 bytes

= (6) Memory to be shared with other processes St
" |f needed

59

Process Separation — Stack overflow detection — Method #1

Task Stack
Initial - / A A
Top-of-Stack //
Stack Growth /
/ Used Stack
\/ Current /
SP /
X Stack Size
Free Stack
Red-Zone
Red Zone Size
Base v
Address

[

MPU Region

60

Process Separation — Stack overflow detection — Method #2

Stack Growth

Initial

Top-of-Stack

Current
SP

Base Address
(Aligned on Power-Of-Two Boundary)

61

Task Stack

—W

T

Used Stack

Free Stack

\/

L

Stack Size
(Size must be a Power-of-Two)

y

\ MPU Region

Process Separation — Stack overflow detection — Method #3

62

Task Stack
Initial o
Top-of-Stack // A A
Stack Growth /
J / Used Stack
Curren t
SP
Stack Size
(Size must be a Power-of-Two)
Free Stack
Base Address o e— l \j
(Aligned on Power-Of-Two Boundary)
/_ MPU Region
(Size must be a Power-of-Two)
(Smaller or Equal to Stack Size)
(Region cannot be part of Process)

Process Separation — User tasks run in Non-Privileged mode

USER Tasks SYSTEM Tasks

Cannot disable interrupts
Cannot change the NVIC settings
Cannot change the MPU settings

@ SVC #N
SVC Jump Table
(Allowed RTOS Services) SVC Handler @

RTOS Service Privileged | |
05SemPost() Can disable interrupts

0SSemPend() Can change the NVIC settings

0SQpPost() Can change the MPU settings
0SQPend()

OSMutexPost() RTOS
OSMutexPend() ivileged
0STimeDly() (Privileged)

Non-Privileged
Code

Privileged

Code

Non-Privileged

OSVersion()

63

Process Separation — Handling Faults

= What happens when a task accesses data outside a valid region?

= The MPU issues an exception called the MemManage Fault

= What can we do when a fault is detected?
= Depends greatly on the application
= The RTOS should save information about the offending task
= To help developers correct the problem
= The RTOS should provide a callback function for each task

= To allow the application to perform a Controlled Shutdown sequence

= Actuators to be placed in a safe state
= Terminate the offending task?
= Do we also need to terminate other tasks associated with the process?

= What happens to the resources owned by the task(s)?

64

Seeing Inside Live Embedded Systems

Debugging Live Systems

66

= You can’t always ‘single step’ through code!
= Engine control

® Printing presses

Food processing

Flight management

Chemical reactions

Agricultural equipment
= Etc.

= Stopping these systems can have disastrous
and/or costly consequences

= Must be tested and debugged live

How Do You ‘See’ Inside These Systems?

= Displaying values using:
= LED annunciators

LT FUEL
Low FUEL "
FILTER

7-Segment numeric displays

CE DEFLEC
- ON

oty = Bar graphs

= Alphanumeric displays

= Graphical user interfaces (GUIs)

" printf () statements to a terminal

I
3500

3 -,-“-’ _ = Debugger’s live watch ... limited to numerical values
- 5'—”-' 3 jb3 7 = Etc.

= Drawbacks:
= Display capabilities might be limited

= All require target resident code
= Heisenberg effect is often significant

= Limited to what you can see/change

= |f you forget something ...

Temperature 1: ‘4— = Rebuild code

Temperature 2: - 158 | Set color I [Down|oad
Min: [1z0 Max: [zzD [start |

" Try to get back to the same test conditions

67

What if We Move the Display/Controls to a PC?

68

RS-232C,
RS485, TCP/IP,
USB, other

Data (RAM)

Using COTS man-machine interfaces (MMlIs)

= e.g. Wonderware ‘InTouch’ (Schneider)

Much better at visualizing the process

Can monitor and/or change hundreds of values

Data logging capabilities

Uses standard PLC protocols
= e.g. Modbus, ProfiNet, DeviceNet, etc.

Drawbacks:
= Target needs a database of accessible variables
= Requires target resident code

= Adds overhead, complexity and cost

COTS MMils are typically for end use

= Could be useful during development

Debugging RTOS-Based Systems — ARM CoreSight Debug Port

69

USB
or
Ethernet

Segger J-Link

Cortex-M |

=

= CoreSight

- (Debug Port)

= usive Non-Intrusive
=

E

s

Core debugging:
Halting

Single stepping

= Resume

= Reset

= Register accesses

Up to 8 hardware breakpoints

Up to 4 hardware watchpoints

Optional instruction trace

Data trace

Instrumentation trace (printf() like) — 32 ch
Profiling counters

PC sampling

On-the-fly memory and I/O accesses
= Can be a security risk for deployed systems though

Debugger Live Watch

70

static woid ZAppTempCtrl (wvoid)

{

EppTempErr AppTemphctual - AppTempStp:

RppTempHeatRate = ((CPU_FP32)AppTempHeaterWatts / (CPU_FE32)1000.0)
((CPU_FP32)1.0 / (CBU_FP32)AppTempRoom3ize);
EppTempCoolRate = ((CPU_FF32)1.0 / (CFU_FP32)AppTempRoomSize);

*

if (RppTempkctual > (AppTempStp + AppTempHyst)) | /* Determine what state we are in
LppTempState = 3 /* Above Stp + Hyst
} else if (AppTemplctual <« (AppTempStp - AppTempHyst)) {
LppTempState =1 /* Below Stp - Hyst
1 else |
LppTempState = 2 /* Between Stp + Hyst and Stp - Hyst
}
if (ZpplempltrlEn == DEF ENABLED) | /* See if contreoller is turned on
BSP_LED Toggle(2):
fF e HEATING MODE ------------
if (RppTempSelHeat == DEF_CN) { /* See 1f heater is selected
AppTemphAC Ctrl = DEF_QFF;
switch (AppTempState) |
case 1:
AppTempHeater_Ctrl = DEF_ON;
LppTempictual += AppTempHeatRate;
BSP_LED On(3);
BSP_IED Off(l};
break;
case I:
if (RppTempHeater Ctrl) {
AppTempActual += AppTlempHeatRate;
1} else |
AppTemphActual -= (CPU_FE32)0.0003; /* Cool the yoom at natural rate
}
break;
case 3:
LppTempHeater Ctrl = DEF OFF;
LppTemphctual -= (CPU_FF32)0.0005; /* Cool the room at natural rate
BSP_LED Of£(3):
BSP_LED Off({l):
break;
}
fF e COOLING MODE --—----—---
1 else | /* We want to get the room colder

AppTempHeater Ctrl = DEF_OFF;
switch (ApplempState) |

£/
*/

*/

*/

*/

*/
=

*

*

*/
*/

= Debuggers have offered Live Watch for years
= Uses the on-the-fly-feature of the Cortex-M

= Typically only displays numerical values
= Difficult to see trends and orders of magnitudes

= Choice of Decimal, Hex, Float, etc.

= Update rate is typically 1 Hz

Live Watch

Expression Walue Location Type
TempCtrl_Actual 7.301209. .. 0=x2000D8D8 float
TempCtrl_Stp 75.0 0xz2000D8D0C flaat
TempCtrl_Err —-1.98690795 0x2000D2E0 float
TempCirl_Hyst 1.0 O0x2000D5E4 float
TempCtrl_ACCoolRate 5.0 0=2000DBES float
TempCtrl_HeaterWarmBRate 5.0 0=2000D8EC flaat
TempCrl_RoomWarmPate c.0 0x200002F0 float
TempCtrl_RoomCoolRate 5.0 0x2000D8F 4 float
TempCtrl_State o' (0=01) 0x2000D978 CRU_INTOSL
TempCtrl_HeaterCirl ‘0' (0=00) O=2000D979 CPU_BQOLEAN
TempCtrl_ACTH ‘w0 (0x00) 0x20000974 CPU_BOOLEAN
TempCrl_HeatColdSel 0 (0=00) O0=x2000D97E CPU_BOOLEAN
TempCtrl_OnOff ‘0 (0=00) 0x2000D97C CPU_BOOLEAN

Micripm’s uC/Probe, Graphical Live Watch®

(Www.micrium.com)

uC/Probe, Graphical Live Watch®

72

Compiler
Assembler Debugger
Linker

RTOS
(Optional)
-—

)

Libraries

@

CDF (1/0s)

CSF (custom Symbols)

On-the-Fly
Memory & 1/0
Access

Cortex-M
Target

UC/Probe is an MMI for embedded systems
= Use the .ELF as the database (same as downloaded code)

= Like a doctor’s stethoscope (non-intrusive)

Adding graphics capabilities to Live Watch

= Display or change values numerically or graphically

A universal tool that interfaces to any target:
= 8-, 16-, 32-, 64-bit and DSPs
= No CPU intervention with Cortex-M

= Requires target resident code if not using the debug
port:

= RS232C, TCP/IP or USB

For bare metal or RTOS-Based applications
= Micrigm’s RTOS and TCP/IP awareness

uC/Probe, Graphical Live Watch®

(2) Drag-and-Drop

(3) Assign to Variable]

= (1) Load the .ELF from the build

Micripm’

i Prtessiona Etion » You have access to all global variables by their name
i [08] insert screens ~ [Tools ~ WOOS;"ITA g DI‘MWFD\? g Lo [0 -
g] i " - - i i

Sy . 166. 03.45 (2) Drag-and-drop graphical objects from the
T E 2R e i palette

0f ¢
i

)

R A SRS

5}
I=ADY

B o=DHOVY

I \.. 0”7 \ . = (3) Assign variables (by name) to:

Jé T - o 1/ * Gauges, meters, bar graphs, cylinders, etc.

7 wattsrms)

.

I

s - = Numeric indicators, sliders, switches, etc.

wo‘

=

};iv — Igg‘?’\p v (@ E v

Peak Peak . . .
R R = Built-in oscilloscope (up to 8 channels)

C“‘ Dimmer Demo 2012 0 | rnesedngie—

i Resistive Load (58 Deg.) i

s Ul L ot . = Excel spreadsheet interface

S | ————— 4o B Q]
Numeric Indicators > S T . .

m o 3 HE~ 213 (3 COF || &3 VORegisters || | (£ CSF | & marT| P ® Search by Name | (© Search by Data Type [¥]| [&] ~ RAM Range Min| 0 Max| FFFFFFFF - Scrl ptl ng
Miscellaneous > All Symbo | Symbol Setti

: ymbols ymbol Settings . .
‘ Al ‘: @ @ . User-Defined Data Type| CData Type Sie | SeFiltered | Memory Address | Device Coe |~ ‘ ::'“ = A i T u Te rmina I win d ow
— emory Address ser Defn
Advanced > f; - e WA 209 200 NA Size (b;es) 30548 C Data Type ” NA
- = CPU_FP32 float 4 4 0x20007044
| & =] v = CPU_FP32 float 4 4 0x20007040 i‘ -
B 1] e | s | e | e | oams || = (4) Run — starts collecting the current value of the
O A SREE s | e T I selected variables.
@® Slg;ped | cmex-;;:)px Little e;.a.an.' | J-Link (sWD) - |2,W Configured: 97 M’n 2,838 @7.40 KB/s - #Rx: 2,837 @7.38 KB/s
——

—

—— = Don’t have to stop the target!

(1) Target Variables]

73

uC/Probe, Graphical Live Watch® - Advanced Features

Micrium’s puC/Probe™ 8-channel oscilloscope

= No need to instrument your code and bring out signals

\ B -
z\isa 1779 - - 0
10000 40000 1000! 40000
| - Y [P Charts (trends)
o 50000 0 SUUDU, - - - -
Apparent Active 100 T + .

Excel spreadsheet interface

S | o Micrium uC/Prode - o x
H T
ascreen

Terminal window

RTOS awareness
= CPU usage of a per-task basis
= |SR and task stack usage on a per-task basis

= Status of all kernel objects

TCP/IP Awareness

= Buffer usage

= |nterface status (Ethernet or Wi-Fi)

90,198 @43.91 KB/s - #Rx 90,198 @43.91 KB/s ‘ L Data t ra n Sfe r rates

= More

74

uC/Probe DEMO

100

Micripm

0

Segger’s SystemView
(www.segger.com)

Segger’s SystemView

= Typically used in an RTOS-based system

= The RTOS needs to be ‘instrumented’

= Supports:
= uC/OS-lI,
B
Uosr Cortex-M = Micrium OS Kernel,
Ethernet = embOS and
Debug Port = FreeRTOS

= Events are ‘recorded’ into a RAM buffer
ISR enter/exit
Semaphore pend/post

Segger J-Link

Mutex pend/post

CPU Message queue pend/post

(RTOS/ISRs)

User Events
= Etc.

79

Debugging RTOS-Based Systems — Segger’s SystemView

DY SEGGER SystemView ¥2.50 PRO - Micrium 05 Tools Deme [Micrium 05 Kenel
Teol Mindow Hep
) 5 4 EHD GO O vewsom

Vew Go Taget

@ Qnoatun v

fad=2] -

n EFMIGG1 - Licensed to Micrium - Juan Benavides

G
10

Evear
0 0dd TRY (381) % ISR Enter
0dd IRQ (P81}
0dd IRQ (FB1) 1 Task Ready

Decail

Ruse for 278.4 up (5 291 eycles)
Post Signal to High Priority Task's Semagho:
uns afver 119.0 us (2 262 cycles)

SysTick 10
G210 Even 180 (PBO)

3

%
Syatick 1 A
SyaTick TRQ %
SyTick Thg A
SysTick IRQ ¥
syetick 180 A
SysTick IRQ 3

Runa for 52.3 ua (995 cycles)

Task

6 cycles)
Task

w1ty Task, Suspende:

2081 B8 (110 355 cycles)

cycles)
Task
cycles)
Task

Context

8 5510 s 1R mE)
(@ fign priority Task
@ 6210 Even 180 (280)
@ 5in Pracriey Tasy
Medium Priority Task

D tow Priorscy Task

© tev 2

O ew

@ v

© tow Prtoricy
S tow prioricy
Lew

© o Frsorscy

Prioricy
D row Priorscy

Task
Task
Tasx
Task

Yeasage
8 starc Processing...

Done Processing.
B starc Processing...
B tone Brocessing.
{8 Done Processing.
8 starc Proceasing.

Task 3 tone Processing.

B starc Frocessing...
1B tone Processing.

-]
:

@
g
H

8 =cars processing...
6 Doe Frocessing.
B start Processing...
8 oone srocessiz.

1 Fou Sigmat 5 B rioricy Task's Sessphare

8 Post Signal to Medium Priority Task's Semaphore

[% wocxmamn B
4 OB RQ PR
4 samamq
© sowdier
B vigh printy Task
20 Mo iy Tk

| -

B
i |

| Nome Type RunCount Frequency Last Rum Time Min Run Tieme MexRunTime Totsl Run Time Run Time/s Min Fun Time/s Max Run Time/s | properny Detsi A
nawE) # 09 3 OHr 027Bdms 02562 ms (e13045) 15073 ms 0Dms 050% 0Oms 000% ||v Target ystem
GPOEwn IRQPE) # 19 5 O 0253ms 026Sms(e1393) 02932 ms (£20089) 19927 ms 09ms 020% 0oms 050% 03785 ms 006% & Name Mecrium 05 Took Dema
I xIRQ # =5 BO 100H QOTms QD4Zms(s10OT) O3ms(e2003) HEM6Ims GA2ems 6% 36668 ms 637% 227 ms 643% 5 Micraum 05 Kernel
Scheduler o um 1083 He 003M3ms 00161 ms (52280M) 01253 ms (£34929) W0065ms NTAI6ms 307% 00ms 0.00% NI2Bms 3% @ Modules No Modules
Figh Priorty Task 8 e 200 © 220007380 o7 OHe 04035ms 00153ms (S26005) 0.9699 ms (£20100) 621170 ms 00ms 0.00% 00ms 000% 173673 ms 1.74% Device EFM326611
Medium Priocty Tk~ B3 ©2 200 @ 0:2000750 0 QS787ms 00302ms (522933) 0.9901 ms (20012 694T3 ms 00ms 0.00% 00ms 0.00% 174645 ms 175% O Cycle Frequency 13,000 000Hz.
(i Low Prority Tesk = 200 © 02000760 a2 Q47TI2ms 00331ms(S20079) 094B5ms(S17278) 3R241652ms 4869905 ms 48.70% 4745603 ms 47AB% 4559905 ms 4B70% © Cycle Period sins
| Kernels Tick Tesk = 256 © 02000020 am Q10%ms 003%ms(s10968) 0952ms (176 4T6ESTIms GASIRms 6I5% S86TSms 529% 09T ms 610% I uptime 1904560 020 947
Kernels Times Task. 8 e 256 © 020001720 s 10H: 0079ms 00336 ms (S11760) 0.0847 ms (20827 63865 ms. 079 ms 008% 07119 ms 007% 09032 ms 0.09% ~ Recording
Kemels Stat Tazk. &2 e 256 @ 020001320 o 0k 04928ms 0033 ms (S110L0) 04985 ms (423554) WINTms 49T ms 043X 44378 ms 0% 50037 ms 050% 3 Hozt Time. 30 Nov 2017 17:28:31
Startup Tack @21 51200200040 0 ok [00ms 00ms 0 0oms 000% 000% Duration 7630 196
e 0] EV I O7Nms 0ARSMS(S]) 032m(e2006) 2699500ms 3517Mme 5% 0oms 000% 3530657 me 3531% z Tele
Author v
QEtEwnts 016019 Contiouous Tigger W

80

= Displays the execution profile of RTOS-based systems
= Displayed live
= Trigger on any task or ISR
= Visualizing the execution profile of an application
= Helps confirm the expected behavior of your system
= Measures CPU usage on a per-task basis
= Min/Max/Avg task run time
= Counts the number of task executions

= Display the occurrence of ‘events’ in your code

= Traces can be saved for post-analysis or record
keeping

= www.Segger.com

SystemView Demo

SystemView

Debugging RTOS-based Systems

Tools for Testing/Debugging RTOS-based Systems

Windows PC

Toolchain
(IDE: Editor/Compiler/Assembler/Linker/Debugger)

i —— Cortex-M l
e — * M Debugger Interface CoreSight
: i ; ; (Segger J-Link) (Debug Port)

HC/Probe

= rdrArirardrardrie

SystemView

83

Detecting Stac

84

k Overflows — Detected with pC/Probe

Red shows stack close to overflowing

@ | EHEQEH =9 J | Micrigm pC/Probe - RTOS-Tests #f6px
Design View
pC/OS-1Il Awareness | RTOS Tests

ISR Stack

Micrium LIB Heap and M. s nts (B;
— Total CPU Usage: 62.15% 100% Name OSCfg_ISRStk] . akaileti sl b A {Bytes)
- P I 1 1 Available 1,024 Availal 1,024
— S 2 Address 0x2000 B9CO
f Used (o 0
Reset | Auto i # Used 42 0%
Stats Fit T = # Free 214 A% Total 1,024 1,024
Total CPU Usage Size 256 Memory Segment # 0 @ 0x2000 B5CO, All Memory Segments
Task(s) Semaphore(s) Mutex(es) Event Flag(s) Queue(s) Timers Tick Lists Memory Partition(s) Constants Miscellaneous
Task(s) 1 Performance ‘ I Task Stack ‘ Task Queue 1 Task Semaphore ‘
T : \ T
| - Interrupt| Scheduler| | | .
| Pendi Context | Msg Sent | Signal
| | ng i : i [| ; 50 | :]
Item S Name | Prio‘ State On Rending TI‘!G_ SRy Switch Dls_able L?Ck | #Used | #Free | Si Stack Usage Name | SE Entries Enteies Size MSQ_ pant Time | Ctr Signal Time
Task | R On Remaining Usage Time Time | (Base Address) (Max) Time | Time
| Object Counter [(Max) (Max) |
(Max) (Max) |
0x2000 D414 \
0 App LPT 7 | Delayed 1 12.28 % 127,762 1512 000/ 83| 117 2 AppLPT_Stk[] of o 0.00 000/ 0| 000/ 000
‘ | b | |] | (0x2000 D240) | \ ‘
i | 0x2000 D12C [|
1 | App MPT | 6 |Suspended 0 631% 42593 1502 000, 69 131| 2 4.50 % AppMPT_Stk[] | o o0 0.00 000/ 0| 000 000
‘ ‘ ! | (0x2000 CF20) | | |
0x2000 CE34 ‘
2 App HPT 5 | Suspended 0 10.62 % 85198 14.94 000 75| 125 2 AppHPT_Stk[] o o 0.00 000/ 0| 000 000
s (0x2000 CCO0) \
<l | 0x2000 D74C [|
3 | App Read Switches| 10 | Delayed ‘ 0 004 % 852 13.92 000/ 77 123 2 AppTaskReadSwStk(] | ‘ o o 0.00 000/ 0| 000/ 000
S | | 1 f il l MAD200003E 0 1 |
o) 0x2000 E4DC ‘
4 App Task Joystick | 11 | Ready 0 4.29% 85218 13.98 000/ 78 7 I | [-ooTaskoystickStk]] ol o 0.00 000 0| 000 000
5 (0x2000 E4CO)
w w ‘ | 0x2000 DD7C 1 |
5 | Temp Ctrl | 12 | Delayed 15 0.06 % 852 1450 000/ 81| 119] 2 TempCtrl_TaskStk[] | ‘ o| 10 0.00 000/ 0| 000| 000
| P | (0x2000 DBAO)| ; |
‘ | 0x2000 DA44 3
6 Power Meter 12 | Delayed ol 11.05% 21342 4402 000/ 87| 1132 owerMeter_TaskStk] o| 10 0.00 000/ 0| 000 000
- 1 | (0x2000 D88O) \
7| Di ; 12 | Read ol 1202% 21358 4434 000/ 87| 113 2 150% | |} Di TaskStk{] | oxa000 cata o 10 0.00 ooo‘ 0 oooi 000/
\) | L 1 | (0x2000 C5C0)| \ i
: | 0x2000 CA74
8 App Task Start 8 | Delayed 37| 005 % 854 13.62 000/ 113 87 2 AppTaskStartstk(] ol o 0.00 000 0| 000 000
| N | i | | i | M i | | (0x2000 C8EQ) | | |
3] | 0x2000 C064 ‘ i i
9 | uC/OS-Ill Stat Task| 30 | Delayed 39 053 % 1552 2646 000 87 169 2 3.98 % Joschy.StatTaskStid] | o o 0.00 000 0| 000/ 000
_ | : ; | (0:200080C0) -
0x2000 E9DC
10 | W | uC/OS-ill Idle Task | 31 | Ready 0 56,224 sz.szi 000/ 58| 17 7733% SCfg_ldleTaskStk{] _— o o 0.00 000 0| 000/ 000
- | X,

Interrupt Disable Time — Detected with pC/Probe

85

Long interrupt disable time affects system responsiveness

S IEHEQEUH ~9Je | Micripm pC/Probe - RTOS-Tests.wspx
Design View
pC/OS-1Il Awareness | RTOS Tests

ISR Stack

Micrium LIB Heap and Memory Segments (Bytes)

Total CPU Usage: 62.79% 100% Name 0SCfg_ISRStk(]
ey I I 2 Available 1,024 Available 1,024
4 N ‘ Address 0x2000 BICO
i Used 0 Used 0
Auto . ll # Used 42 - W 0% = 0%
it R = # Free 214 641 % &) Total 1,024 Total 1,024
Total CPU Usage Size 256 Memory Segment # 0 @ 0x2000 B5CO All Memory Segments
Task(s) Semaphore(s) Mutex(es) Event Flag(s) Queue(s) Timers Tick Lists Memory Partition(s) Constants Misgfilaneous
|
Task(s) ! Performance ‘ Task Stack Task Queue 1 Task Semaphore
‘ I ‘ ‘
| | | |
| | Interrupt| Bcheduler| | | | |
Pending : ‘ Conte: % | 5 Msg Sent = | Signal
Item S Name ‘ Prio State On Eending Tlc!(s_ CEU | Switch Dls-able L?Ck | #Used‘ #Free Size Stack Usage Name SE ! Entries Entzies Size Ms? St Time | Ctr Slgnal‘ Time
Task R On Remaining | Usage Time Time | | (Base Address) | (Max) Time Time
Object | Countel | | | (Max) (Max)
I | | (Max) (Max) [[
| | ‘ 0x2000 D734 ‘ i
0 App LPT 7 | Ready 0 1217 % 147978 1496 000 83| 117| 200 AppLPT_Stk[] ‘ of o0 0.00 000/ 0| 000/ 0.00
e i i I | (0x2000 D560) | | \
I 1 0x2000 D44C | |
1 App MPT | 6 | suspended (i 49558 1488 000/ 69 131/ 200 450 % AppMPT_Stk[] | 0 o o 0.00 000/ 0| 000 000
' 1 Bz : : : (0x2000DE40)] 1 1 i}
! | 0%2000 D124 ‘
2 App HPT 5 | Pending | Semaphore 0 1066 % 9948 1484 000 75 125) 200 AppHPT_Stk[] 0 ol o 0.00 000 0| 000 000
o3 (0x2000 CF20) |
— 0%2000 DAGC | i
3 App Read Switches| 10 | Delayed o 004% 10 13.92 000| 77| 123| 200 AppTaskReadSwStk(] | 0 of o 0.00 000/ 0| 000/ 0.00
| o (0x2000 D880)| | |
g |) 0x2000 CDEC | ;
4 App Task Joystick | 11 | Delayed 0 427% 95528 1366 000 77| 123| 200 AppTaskJoystickStk[] Nmiomamesd 0 o o 0.00 000/ 0| 000 000
- X
5 Temp Ctrl ; 12 | Delayed 15| | 0.06 % 9 14.50 000/ 81| 119 200).50% | | TempCtrl_TaskStk[] mooososc; 0 0; 10 0.00 ooo; 0; ooo‘ 0.00
p | 3% I (0x2000 DECO), | [|
‘ ‘ 0x2000 DDB4 | | l
6 Power Meter 12 | Delayed 2 11.98% 2,406) 44.02 000, 87| 113| 200 PowerMeter_TaskStk[] 0 o| 10 0.00 000 0| 000 0.00
I = | | (0x2000 DBAD) |] i
:) 0x2000 C784 | [*
7 Dimmer 12 | Delayed 0 13.10% 2421 4434 000/ 87| 113/ 200 Dimmer_TaskStk(] | 0 o| 10 0.00 000/ 0| 000/ 000
[1 i g i i | | (0x2000 C5€0)| | | |
; 0x2000 CA74
8 App Task Start 8 | Delayed 32 005 % 97l 1362 000 113 87| 200 AppTaskStartStk[] 0 ol o 0.00 000 0| 000 000
- | (0x2000 C8EO) ‘
\ \ 0x2000 C064 ‘
9 uC/OS-li Stat Task| 30 | Delayed 24 0.78% 19 2650 000 87 169| 256 3.98 % OSCfg_StatTaskStk[] 0 ol o 0.00 000/ 0| 000 000
| & (0x2000 BDCO) | |
\ 0x2000 E99C
10 | W | uC/OS-lil Idle Task | 31 | Ready 0 52 % 64380 44.08 000| 58 17| 75 7733% 0SCfg_ldleTaskStk(] of o 0.00 000/ 0| 000/ 000
| | = L i I |] | (0x2000 E950) | ‘ ‘

Priority Inversions Problem — Detected with SystemView

OSSemPend (&Semaphore, Timeout) ; I

//Access the Shared Resource AppLPT
N@
\@I\g‘ : Shared
|

OSSemPost (&Semaphore) ;

Resource

Semaphore

OSSemPend (&Semaphore, Timeout) ;
//Access the Shared Resource AppHPT
OSSemPost (&Semaphore) ; I

Priority Inversion caused by using a Semaphore:

{4 & SysTick I
4> Scheduler I

N

- Q0 -
UNBOUNDED Priority Inversion

£} App HPT
£=1 App MPT a L
&= App LPT L

86

Priority Inversion Solution — Confirmed with SystemView

OSMutexPend (&Mutex, Timeout) ; I
//Access the Shared Resource AppLPT |
OSMutexPost (&Mutex) ; \I@
\@I\# Shared
| 8 Resource

Mutex

OSMutexPend (&Mutex, Timeout) ;
//Access the Shared Resource AppHPT
OSMutexPost (&Mutex) ; I

Unbounded Priority Inversion eliminated by using a Mutex

1 & SysTick I
4% Scheduler I

£ App HPT

= App MPT o
= App LPT
. N

BOUNDED Priority Inversion

87

Deadlock Problem

Mutex2

1

OSMutexPend (&Mutex2, Timeout) ;
OSMutexPend (&Mutexl, Timeout) ;
//Access the Shared Resource
OSMutexPost (&Mutexl) ;
OSMutexPost (&Mutex2) ;

Shared
Resource
H#2

OSMutexPend (&Mutexl, Timeout) ;

OSMutexPend (&Mutex2, Timeout) ; Shared
//Access the Shared Resource Mutex1 Resource
OSMutexPost (&Mutex2) ; #1
OSMutexPost (&Mutexl) ; :

88

Deadlocks - Detected with uC/Probe

89

Two or more tasks would stop executing

ISR Stack
Micrium LIB Heap and M s ts (B;
Al Total CPU Usage: 34.83% 100% Name OSCfgISRStcl ~C T P AR ¥ —eg9men (Bytes)
ey v = | I | e 1,024 Available 1,024
—= ~ 50 5 - Address 0x2000 B9CO Veed
Auto i : m; 7 # Used % o 0 o
{
Fit = — #Free 160 E otal 1,024 Total 1,024
Total CPU Usage G 756 Memory Segment # 0 @ 0x2000 B5CO All Memory Segments
Task(s) Semaphore(s) Mutex(es) Event Flag(s) Queue(s) Timers Tick Lists ~ Memory Partition(s) Constants Miscellan
Task(s) Performance Task Stack Task Queue Task Semaphore
aterrupt Scheduler
Pending . . Context . . Msg Sent . Signal
Item S Name Prio State On Pending TIC!G. cru Switch Dls-able L?ck #Used | #Free | Size Stack Usage Name = Entries piies Size Msg; o Time | Ctr Sl-gnal Time
Task A On Remaining Usage Time Time (Base Address) (Max) Time Time
Object Counter (Max) (Max)
(Max) (Max)
0x2000 D414
0 App LPT 7 Delayed Semaphore #2 2 367 % 7536 | 1496 000, 110/ 90| 200 ApplLPT_Stk[] 0 0 o0 0.00 000/ 0 000 000
H (0x2000 D240)
0x2000 D12C
1 App MPT 3 Suspended 0 213% 2215 | 1488 000 84 116 200 00 % AppMPT_Stk[] 0 0 o0 0.00 000/ 0| 000 000
s (0x2000 CF20)
0x2000 CE04
2 | W | AppHPT 5 Suspended Semaphare #1 off z3mwm | 4514 || 15.08 000 78 122 200 9.00% || AppHPTStk(] (0:2000 CC00) 0 o o 0.00 000/ 0| 000/ 0.00
- I,
0x2000 D74C
3 App Read Switches| 10 Delayed 0 004% | 137 § 1392 000 77| 123] 200 550% | | AppTaskReadSwSti[] (0:2000 D560) 0 0 o0 0.00 000/ 0| 000 000
- I,
0x2000 E51C
4 App Task Joystick | 11 Delayed 1 432% 13,955 || 1432 000 78| 7| &5 NN | | AooTsskoystickstk] 0 o o 0.00 000 0 000 0.00
= (0x2000 E4COQ)
0x2000 DD7C
5 Temp Ctrl 12 Delayed 15 0.06% 141 | 1450 000 81| 119, 200 TempCtrl_TaskStk[] 0 0 10 0.00 000/ 0 000/ 000
b (0x2000 DBAQ)
0x2000 DA44
6 Power Meter 12 Delayed 1 10.13% 2372 || 2680 000/ 87| 113| 200 PowerMeter_TaskStk] 0 0o 10 0.00 000 o 000 000
N (0x2000 D880)
i 0x2000 C784
7 Dimmer 12 Delayed 3 13.17% 3,603 | 4840 000/ 87| 113| 200 Dimmer_TaskStk]] 0 0 10 0.00 000/ 0 000/ 000
S {0x2000 C5C0)
0x2000 CA74
8 App Task Start 8 Delayed 5 0.05% 126 | 13.98 000 113] 87| 200 AppTaskStartSte]] 0 o o 000 000/ 0| 000 000
s (0x2000 C8ED)
0x2000 C064
9 uC/OS-lIl Stat Task| 30 Delayed 23 073% 216 || 3542 000/ 87| 169| 256 3.98 % OSCfg_StatTaskStk(] ——— 0 0 0 0.00 000/ 0| 000 0.00
- X,
0x2000 E9DC
10 uC/OS-Iil Idle Task | 31 Ready o EEE, | 11,082 | 61.78 000 s8] 17 73 7733% OSClg IdeTaskSH 1 | o1 easty 0 0 0 000 000/ 0| 000 000
ry X

Starvation - Detected with uC/Probe

High CPU usage for high-priority task(s) can starve low-priority tasks

ISR Stack /
Micrium LIB Heap and Memory Segments (Bytes)
Total CPU Usage: 93.34% 100% Name 05Cfg_ISRStK] - -
roe} / _ ¥ T ¥ Available 1,024 Available 1,024
e ~ 50 <\ I I I Address 0x2000 B9CO Used . Jsed)
Auto y —4 I I ! # Used 9
—0 @=To— O — 0% S — 0%
Fit — — 4 Free 160 Total 1,024 Total 1,024
Total CPU Usage Size 956 Memory Segment # 0 @ 0x2000 B5C0 All Memory Segments
Task(s) Semaphore(s) Mutex(es) Event Flag(s) Queue(s) Timers Tick Lists. Memory Partition(s) Consta Miscellaneous
Task(s) Pirformance Task Stack Task Queue Task Semaphore
B Interrupt| Scheduler
Pending . Context . . Msg Sent . Signal
ltem 21 Name Prio State On Pending Switch Dls.able L?Ck #Used #Free| Size Stack Usage Name =L Entries Errteies Size Ms’i =il Time | Cir SI.g"al Time
Task Obiect On Counte: Time Time (Base Address) (Max) Time (Max) Time (Max)
J T Max) | (Max) = =
0x2000 CE04
2 B | AppHPT 5 Suspended 972596 15.28 000 106 94| 200 AppHPT_Stk[] 0 o o 0.00 000/ 0| 000 000
(0x2000 CCOO)
0x2000 D12C
1 App MPT 6 Suspended 486,297 26.80 000 69 131 200 450 % AppMPT_Stk{] 0 0 0 0.00 000 0| 000 000
(0x2000 CF20)
0x2000 D414
0 App LPT 7 Delayed 1477188 3554 000 110, 90| 200 AppLPT_Stk{] 0 o o 0.00 000 0| 000 000
(0x2000 D240)
0x2000 CA74
8 App Task Start 8 Delayed 42,161 14.20 000/ 113 87| 200 AppTaskStartStk[] 0 o o 000 000/ 0 000 000
(0x2000 C8EQ)
) 0x2000 D74C
3 App Read Switches| 9 Delayed 42,160 1446 000 77 23| 200 AppTaskReadSwStk] | 0 o o 0.00 000 0| 000 000
(0x2000 D560)
)) 0x2000 E4DC
4 App Task Joystick | 10 Ready 963884 17.88 000, 78 7 &5 |NEIEEEEN | | AopTesoysticcstk] 0 o o 000 000/ 0 000 000
(0x2000 E4CO)
0x2000 DD7C
5 Temp Ctrl 12 Delayed 40,707 1502 000, 81 119| 200 TempCtrl_TaskStk[] 0 0 10 0.00 0.00/ 0| 000 0.00
(0x2000 DBAQ)
0x2000 DA44
6 Power Meter 12 Delayed 431,949 5342 000| 87 113] 200 Powerheter_TaskStk[] 0 o 10 0.00 000/ 0| 000 000
(0x2000 D380)
) 0x2000 C784
7 Dimmer 12 Ready 433395 5294 000, &7 113|200 Dimmer_TaskStk[] 0 o 10 0.00 000/ 0| 000 000
(0x2000 C5C0)
0x2000 C064
9 uC/OS-1ll Stat Task| 30 Delayed 75494 5286 000 87 169 256 398 % OSCfg_StatTaskStk] | 0 0 0 0.00 000 0| 000 000
(0x2000 BDCO)
0x2000 E99C
10 uC/OS-IIl Idle Task | 31 Ready 437541 70.72 000/ 58 17| 75 7733% 0SCfg_ldleTaskStk{] 1052000 £950) 0 0 0 0.00 0000 0 000 000
%,

91

Starvation - Detected with SystemView

Excessive CPU Usage means that low-priority tasks are subject to starvation

Unified

1 & SysTick

@ Scheduler I

&1 App HPT

= App MPT

= App LPT

£ App Task Start

&= App Read Switches
pp ='

= App Task Joystick

& Dimmer
= Power Meter

| |
= Temp Cirl B

uC/OS-1II Stat Task

¢ e

92

Code Execution Time - Detected with SystemView

Events
f Timsstamp Context Event Detail
4016152 02:13.656 48% 840. SysTick f~ O8TickCtr++ G3TickCtr=T7505%20
4016153 02:13,.656 502 920 sysTick b Task Ready App LPT, runs after 45.4 us (2 272 cycles)
4016134 02:13.636 313 ?20! gysTick |b Task Beady App Task Joystick, runs after 985.0 us (4% 451 cycles)
a4015155 02:13.656 534 240 8ysTick ¥« ISR Exit Returns to Scheduler
401615€ 02:13.656 548 3508 App LPT F Task Run Runs for 57.8 us (4 854 cycles)
4016157 02:13.656 573 120 App LPT ¥ 033emPend p_sem=0x000040dd
4016158 02:13.656 585 SZQI:I App LPT /g OSSemPend Returns OS_ERR_NONE after 16.5 us.
4016155 02:13.656 €01 &80 App LeT % §63 Fa TC
4016160 02:13.656 621 DOOD App LPT IF Task Ready
401616l 02:13.656 €31 100 App LPT b Task Ready App HPT, runs after 40.7 us (2 032& cycles)
ANTEIESD .. T.om Il m b omil ! BT E-] Al

Timeline Width: 10.0 ms

02:13.655 978 B38

Unified

SysTick -|

& Scheduler []

| B AppwPT
£zl App MPT

£zl App LPT |
App Task Start ||

=l App Read Switches |

=] Task ick
Dimmer ||

i Poweer Meter L
||

Temp Ctrl
EEl uC/os-II Timer Tas,
B uC/0sS-IN Stat Task |
@ Ide

<
Contexts
Mame Type Stack Information Run Count Frequency Last Run Time Min Run Time Max Run Time Total Run Time
[] SysTick # #15 136505 1000 Hz 0.2191 ms 0.1187 ms (#2789700) 0.5488 ms (#4016155)’ 26219.4840 ms
B scheduler = 698397 5104 Hz 0.0197 ms 0.0108 ms (#213) 0.3201 s (#409583) 14638.9806 ms
[AppHPT = @5 200 @ (20004800 136484 1000 Hz 0.1179 ms 0.1056 ms (#677832) 0.2202 ms (#4016041) 15280.4732 ms
[| App MPT = @6 200 @ Ox2000db20 68243 500 Hz 0.1213 ms 0.0908 ms (#65) 0.2233 ms (#2217695) 8286.6249 ms
) AppLPT = @7 200 @ Ox2000ded0 204733 1500 Hz 0.0441 ms 0.0196 ms (#2066340) 0.2039 ms (#3569352) 16472.3084 ms
] App Task Start = @g 200 @ Ox2000d4e0 1381 10Hz 0.0558 ms 0.0196 rns (#109998) 0.0612 ms (#861363) 76.8549 ms
] App Read Switches & @9 200 @ O0x2000e160 1365 10Hz 0.0376 ms 0.0372 ms (£#34885) 0.0394 ms (#416551) 51.4669 ms
@& App Task Joystick = @0 85 @ (u2000f0c0 136465 1000 Hz 0.0280 ms 0.0196 ms (#145) 0.3466 ms (#3114492) 4066.6027 ms
& Dimmer = @12 200 @ Ox2000d1c0 22772 167 Hz 0.7035 ms 0.0196 s (#415932) 0.8174 ms (#325710) 12303.2489 ms
& Power Meter = @12 200 @ Ox2000e480 22775 167 Hz 0.2621 ms 0.0196 ms (¥265668) 0.8174 ms (#4081772) 11023.1367 ms
&) Temp Ctrl = @12 200 @ 0x2000e7a0 1348 10Hz 0.0525 ms 0.0199 ms (#4115) 0.0541 ms (#349807) 704912 ms
) uC/OS-1 Timer Task & @29 256 @ 0x2000c9c0 0 0Hz 0.0 ms 0.0 ms
) uC/0S-1 Stat Task B2 @30 256 @ Ox2000c5c0 2458 15 Hz 0.1556 ms 0.0196 ms (#1348506) 0.5697 ms (#326383) 7753048 ms
Idle o} 44468 329Hz 0.4454 ms 0.0189 ms (#55376) 0.8319 ms (#475978) 24237.7682 ms

93

SysTick ISR execution time
longer than usual!?!

Code Execution Time — Displayed with uC/Probe

void elapsed time start (uint32 t i)
{
elapsed _time tbl[i].start = ARM CM DWT_ CYCCNT;
}
Code instrumented with Elapsed Time measurement functions:

elapsed time Start (n) ; void elapsed time stop (uint32 t i)
- - {

// Code to measure vt ¢ stop;
ELAPSED TIME *p tbl;
elapsed time stop(n);

stop
p tbl
p tbl->current
if (p_tbl->max

ARM CM DWT_ CYCCNT;
&elapsed time tbl[i];
stop - p tbl->start;
p_tbl->current) {

A

p_ tbl->max p_tbl->current;
}
OSTaskCreate() €0OSSemCreate() OSMutexCreate() B

(microseconds) (microseconds) (microseconds) }

vax: 186.8 18.6 16.5
vin: 81.4 17.7 16.3

Scaled from Free-Running counter counts to microseconds

94

Using an RTOS — Industrial Engine Control

Natural Gas Compressor Stations (~300-600 RPM)

CAM
Sensor for Power Stroke Reference

[1 Y
Recip Compressor

(Dual acting — Head and Crank)

96

Power Cylinders
(6 to 20)

TDC #1
Sensor for Reference

Flywheel
Teeth used to measure velocity

Using an RTOS — Industrial Engine Control

= Controls
= Sequencing (Start, Load, Stop, Shutdown) Temperatures 10s)
= Ignition (Time Critical) E;Zs:gi)(los)
* Fuel Management Position (2+)
Switches (10s)
= Fuel Injection (Time Critical) Etc. Spark Plugs (6-40)
. Fuel Injectors (6-20)
" Air Management Actuators (10s)
* Turbo charged Solenoids (10s)
Relays (10s)
= Valve Management Lamps (10s)
= Suction, Discharge, Bypass Etc. >
= Compressor control Jser Interface |
= Loading with pockets (Open/Close, up to 32)
= Lubrication control
« File System

= Monitoring

= Temperatures
Ethernet (TCP/IP)

Or Industrial Bus
ﬁ

= Pressures
= Flow
= Ftc.

97

lgnition — Time Critical

FOUR STROKE CYCL.E ENGINE

180 Teeth Ring Gear used for Timing

INTAKE COMPRESSION COMBUSTION EXHAUST
TDC Cyl. X
a
X Dwell
(5-18 degrees)
@600 RPM =1.38 to 5.00 ms Ti
.. , » Time
3 Sensors needed for timing: Dly to Fire
1) Flywheel position Flvwheel N N+l N+2
2) TDC#1 ¥eeth
3) CAM Velocity
—

I

Time to compute next firing (555 uS at 600 RPM)

98

Fuel Injection — Time Critical

WIRING CONNECTOR
(TO COMPUTER)

SPRAY PATTERN

Direct injection into cylinder Injection upstream near the valve

10N ow-13 8

3 Sensors needed for timing:
1) Flywheel position

2) TDC#1

3) CAM

Injector Injector TDCCyl. X
Open Close 1
(180 - X degrees) (180 - Y degrees)
Fuel Injector Open)
» Time

Dly to Open Dly to Close

Flywheel T/elocitv‘
Teeth

99

Time to compute injector closing firing (555 uS at 600 RPM)

Using an RTOS — Smart Thermostat

Using an RTOS — An loT Thermostat

105

TCP/IP + WiFi

Storage S

Rotary and push button interface Switches
Liquid Crystal Display (LCD)
Backlight (brightness)

Backlight (PWM) }

Heater (On/Off)

Battery (monitoring) A/C Compressor (On/Off)

Sensors Smart Fan (On/Off)
= Temperature ‘Qe ALY Thermostat
= Humidity

Voltage
= Presence
= Etc.

TCP/IP + WiFi
< >

Temperature

~—>
0

Controls

= Heating Element
= A/C Compressor Battery Level
" Fan

File System Q

Using an RTOS — An loT Thermostat — Task Diagram

Backlight (PWM) X

Read
Sensors

|

Humidity
Temperature —
Battery Level

Heater (On/Off)
e A\ /C Compressor (On/Off)
Fan (On/Off)

106

Recommendations

Recommendations - RTOS

Don’t have too many tasks Keep the number of priorities low (< 32)

= Requires more RAM = More efficient scheduling

Don’t have too few tasks RTOS APIs consume CPU cycles

= Defeats the purpose of having an RTOS = Be aware of this

Keep ISRs short Don’t enable the FPU if not needed

= Clear the interrupt, signal a task

Create graphical models of your application. Use:
= Use non-Kernel Aware ISRs only when absolutely needed

= Set task priorities at design time M;::zie E;/Ient
ag
* Don’t change task priorities at run-time m
= Use Mutexes instead of Semaphores for resource sharing Flal\;(s)D_
Timeout
Semaphore

= Avoid using round-robin scheduling ot Tlmeout
= Round-robin scheduling starve lower priority tasks F T'mer Time Delay

108

Recommendations - Storage

= Allocate all RTOS objects statically

= Avoidmalloc () and free ()

= Don’t delete RTOS objects at run-time
" [fyoumalloc () don’t free ()

= The task could own resources that other tasks need

= Avoid excessive stack usage
= Don’t allocate large arrays on task stacks
= Some linkers will give you stack usage per function
= Monitor stack usage using a Kernel aware debugger or
HUC/Probe

= Keep data in scope when using Message Queues

109

Recommendations — Use an MPU

110

= Separate the application by Process

= Most tasks should be non-privileged
= They cannot disable interrupts!

Determine what to do when an access violation is
detected

Set the XN-bit (execute Never bit) for RAM
Limit peripheral access to its own process
Reduce interprocess communication
Log/report faults to developers

Create ‘named sections’ for your RAM
= Makes it easier to map sections with the linker

Don’t use a global heap
* You cannot protect heap data with an MPU

= Don’t pass data from one task stack to another

= All kernel objects should be allocated in Kernel space

= User task simply pass by reference

Recommendations — Use RTOS Aware Tools

= Use tools designed to debug RTOS-based applications

» Micrium’s uC/Probe (www.micrium.com) = Segger SystemView (www.segger.com)

G
= Provide ‘visibility’ in your running application m = Detect priority inversions ’!
= Any application variable can be displayed - = Detect starvation __5.2

= Kernel Awareness

Detect deadlocks
= Monitor stack usage to detect potential overflows

Measure code execution times
= Detect starvation

Validate priorities

= Detect deadlock
etect deadlocks = Etc.

= Monitor CPU usage
= Monitor interrupt disable time
= Etc.

= Simulate hardware
= Change setpoints
= Ftc.

111

http://www.segger.com/
http://www.micrium.com/

References

References — Books

113

UC/0S-1ll, The Real-Time Kernel, and the Freescale = MicroC/OS-Il, The Real-Time Kernel, Jean J. Labrosse,
Kinetis ARM Cortex-M4, Jean J. Labrosse, 978- 978-1578201037
0982337523

= A Practitioner’s Handbook for Real-Time Analysis: Guide
UC/0S-1ll, The Real-Time Kernel, and the Infineon to Rate Monotonic Analysis for Real-Time Systems, by
XMC4500, Jean J. Labrosse, 978-1935772200 Mark Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and

) Michael Gonzales Harbour, 978-0792393610
uC/0S-lll, The Real-Time Kernel, and the NXP LPC1700,

Jean J. Labrosse, 978-0982337554 = The Definitive Guide to ARM Cortex-M3 and Cortex-M4

) Processors, Joseph Yiu, 978-0124080829
uC/0S-lll, The Real-Time Kernel, and the Renesas RX62N,

Jean J. Labrosse, 978-0982337578

uC/0S-lll, The Real-Time Kernel, and the Renesas
SH7216, Jean J. Labrosse, 978-0982337547

THE DEFINITIVE GUIDE TO
ARM® CORTEX®-M3
AND CORTEX®-M4

i PROCESSORS

Joseph Yiu

uC/0S-lll, The Real-Time Kernel, for the STM32 ARM
Cortex-M3, Jean J. Labrosse, 978-0982337530

uC/0S-lll, The Real-Time Kernel, and the Stellaris MCUs,
Jean J. Labrosse, 978-0982337561

References - Development Tools

= Silicon Labs Integrated Development Environment (FREE):

= https://www.silabs.com/products/development-tools/software/simplicity-studio

= Silicon Labs Development Boards:

= https://www.silabs.com/products/development-tools/mcu

= Silicon Labs / Micrium OS Kernel (FREE when using Silicon Labs chips):

= https://www.silabs.com/products/development-tools/software/micrium-os

= Micrium’s uC/Probe, Graphical Live Watch® (FREE Educational Version):

= https://www.micrium.com/ucprobe/trial/

= Segger’s SystemView (FREE Evaluation Version):

t e
EEMIZY vy, | B

= https://www.segger.com/downloads/free-utilities/

a0 3

oK -
M,
- EFMI2GG11
SILICON LABS s . . S

|n|_||‘lv'|ll|I|||||||l_||'|||||ﬁ

114

https://www.silabs.com/products/development-tools/software/simplicity-studio
https://www.silabs.com/products/development-tools/mcu
https://www.silabs.com/products/development-tools/software/micrium-os
https://www.micrium.com/ucprobe/trial/
https://www.segger.com/downloads/free-utilities/

References — Videos

" Getting Started with Micrium OS, 10 Episode Series Getting Started with

= https://www.youtube.com/playlist?list=PL- Micrium OS
awFRrdECXu917ybAl5tEgwn7BQF6N56

= SystemView f or MC/ Os-ll Introduction to Kernels
= https://www.youtube.com/watch?v=1Le5YwSADTs

= Micrium, Internet of Things
= https://www.micrium.com/training/videos/#foobox-3/0/SDJVFr4AVUHA

Making Sense of the loT

3 YouTube

115

https://www.youtube.com/playlist?list=PL-awFRrdECXu9I7ybAl5tEgwn7BQF6N56
https://www.youtube.com/watch?v=1Le5YwSADTs
https://www.micrium.com/training/videos/#foobox-3/0/SDJVFr4VUHA
https://www.youtube.com/playlist?list=PL-awFRrdECXu9I7ybAl5tEgwn7BQF6N56
https://www.youtube.com/watch?v=1Le5YwSADTs
https://www.micrium.com/training/videos/#foobox-3/0/SDJVFr4VUHA

References — Websites

= Silicon Labs:
= Micrium OS Kernel (i.e. RTOS) FREE with Silicon Labs MCUs
= Free development tools: Simplicity Studio

» www.Silabs.com

* Micrium (a Silicon Labs Business Unit):
= nC/OS-1l and uC/0OS-1Il RTOS and middleware
= uC/Probe
= Blogs

* www.Micrium.com

= Segger:
= embOS RTOS and middleware
= SystemView and J-Links

" www.Segger.com

116

http://www.silabs.com/
http://www.micrium.com/
http://www.segger.com/

Thank youl!

SILABS.COM

